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Fig. 1: SENSEI gives simulations access to a wide array of scalable data analytics and visualization solutions through
a single API.
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CHAPTER 1

Introduction

Write once run anywhere. SENSEI seamlessly & efficiently enables in situ data processing with a diverse set of
languages, tools & libraries through a simple API, data model, and run-time configuration mechanism.

A SENSEI instrumented simulation can switch between different analysis back-ends such as ADIOS, Libsim, Ascent,
Catalyst etc, at run time without modifying code. This flexibility provides options for users, who may have varying
needs and preferences about which tools to use to accomplish a task.

Deploying a back end data consumer in SENSEI makes it usable by any SENSEI instrumented simulation. SENSEI
is focused on being light weight, having low memory and execution overhead, having a simple API, and minimizing
dependencies for each back-end that we support.

Scientists often want to add their own diagnostics in addition to or in place of other back-ends. We strive to make this
easy to do in Python and C++. We don’t aim to replace or compete against an individual vis/analysis tool, we aim to
make the pie bigger by making their tool and capabilities available to a broader set of users.

With SENSEI the sum is greater than the parts. For instance for both simulations and back-end data consumers, which
have not been designed for in transit use, can be run in transit with out modification. Configuring for in transit run
makes use of the same simple configuration mechanism that is used to select back-end data consumer.

Write once run everywhere. SENSEI provides access to a diverse set of in situ analysis back-ends and transport layers
through a simple API and data model. Simulations instrumented with the SENSEI API can process data using any of
these back-ends interchangeably. The back-ends are selected and configured at run-time via an XML configuration
file. This document is targeted at scientists and developers wishing to run simulations instrumented with SENSEI,
instrument a new simulation, or develop new analysis back-ends.
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CHAPTER 2

Source Code

SENSEI is open source and freely available on github at https://github.com/SENSEI-insitu/SENSEI.
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CHAPTER 3

Online Documentation

SENSEI has autmated Doxygen documentation at https://sensei-insitu.readthedocs.io/en/latest/doxygen.
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CHAPTER 4

Table of Contents

4.1 Installation

The base install of SENSEI depends on CMake, MPI, Python, SWIG, numpy, and mpi4py.

git clone https://github.com/SENSEI-insitu/SENSEI
mkdir sensei-build
cd sensei-build
cmake ../SENSEI
make -j

This base install enables one to perform in situ in Python using user provided Python scripts. For more information on
Python based in situ see our ISAV 2018 paper.

Additional in situ and in transit processing capabilities are available by enabling various build options on the CMake
command line.

9
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Build Option De-
fault

Description

ENABLE_CUDA OFF Enables CUDA accelerated codes. Requires compute capability 7.5 and CUDA 11
or later.

ENABLE_PYTHON ON Enables Python bindings. Requires Python, Numpy, mpi4py, and SWIG.
EN-
ABLE_CATALYST

OFF Enables the Catalyst analysis adaptor. Depends on ParaView Catalyst. Set Par-
aView_DIR.

EN-
ABLE_CATALYST_PYTHON

OFF Enables Python features of the Catalyst analysis adaptor.

ParaView_DIR Set to the directory containing ParaViewConfig.cmake.
ENABLE_ASCENT OFF Enables the Ascent analysis adaptor. Requires an Ascent install.
ASCENT_DIR Set to the directory containing the Ascent CMake configuration.
ENABLE_ADIOS2 OFF Enables ADIOS 2 in transit transport. Set ADIOS2_DIR.
ADIOS2_DIR Set to the directory containing ADIOSConfig.cmake
ENABLE_HDF5 OFF Enables HDF5 adaptors and endpoints. Set HDF5_DIR.
HDF5_DIR Set to the directory containing HDF5Config.cmake
ENABLE_LIBSIM OFF Enables Libsim data and analysis adaptors. Requires Libsim. Set VTK_DIR and

LIBSIM_DIR.
LIBSIM_DIR Path to libsim install.
ENABLE_VTK_IO OFF Enables adaptors to write to VTK XML format.
EN-
ABLE_VTK_MPI

OFF Enables MPI parallel VTK filters, such as parallel I/O.

VTK_DIR Set to the directory containing VTKConfig.cmake.
ENABLE_VTKM OFF Enables analyses that use VTK-m. Requires an install of VTK-m. Experimental,

each implementation requires an exact version match

4.2 System Components

4.2.1 System Overview & Architecture

SENSEI is a light weight framework for in situ data analysis. SENSEI’s data model and API provide uniform access
to and run time selection of a diverse set of visualization and analysis back ends including VisIt Libsim, ParaView
Catalyst, VTK-m, Ascent, ADIOS, Yt, and Python.

In situ architecture

Fig. 4.1: SENSEI’s in situ architecture enables use of a diverse of back ends which can be selected at run time via an
XML configuration file

The three major architectural components in SENSEI are data adaptors which present simulation data in SENSEI’s
data model, analysis adaptors which present the back end data consumers to the simulation, and bridge code from
which the simulation manages adaptors and periodically pushes data through the system. SENSEI comes equipped
with a number of analysis adaptors enabling use of popular analysis and visualization libraries such as VisIt Libsim,
ParaView Catalyst, Python, and ADIOS to name a few. AMReX contains SENSEI data adaptors and bridge code
making it easy to use in AMReX based simulation codes.

SENSEI provides a configurable analysis adaptor which uses an XML file to select and configure one or more back
ends at run time. Run time selection of the back end via XML means one user can access Catalyst, another Libsim,
yet another Python with no changes to the code. This is depicted in figure Fig. 4.1. On the left side of the figure
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SENSEI Documentation, Release 4.0.0-54-g4c28c54

AMReX produces data, the bridge code pushes the data through the configurable analysis adaptor to the back end that
was selected at run time.

In transit architecture

Fig. 4.2: SENSEI’s in transit architecture enables decoupling of analysis and simulation.

SENSEI’s in transit architecture enables decoupling of analysis and simulation. In this configuration the simulation
runs in one job and the analysis runs in a second job, optionally on a separate set of compute resources, optionally at
a smaller or larger level of concurrency. The configuration is made possible by a variety of transports who’s job is to
move and repartitions data. This is depicted in figure Fig. 4.2.

In the in transit configuration, the simulation running in one job uses SENSEI’s configurable analysis adaptor to select
and configure the write side of the transport. When the simulation pushes data through the SENSEI API for analysis
the transport deals with presenting and moving data needed for analysis across the network. In asynchronous mode
the simulation proceeds while the data is processed.

A second job, running the SENSEI in transit end-point, uses the configurable analysis adaptor to select and configure
one of the back-ends. A transport specific data adaptor presents the available data to the analysis. The analysis can
select and request data to be moved across the network for processing.

SENSEI’s design enables this configuration to occur with no changes to either the simulation or analysis back-end.
The process is entirely seamless from the simulations point of view and can be so if desired on the analysis side as
well. SENSEI supports in transit aware analyses, and provides API’s for yielding control data repartitioning to the
analysis.

4.2.2 Adaptor API’s

SENSEI makes heavy use of the adaptor design pattern. This pattern is used to abstract away the details of complex
and diverse systems exposing them through a single API. SENSEI has 2 types of adaptor. The DataAdaptor abstracts
away the details of accessing simulation data. This let’s analysis back-ends access any simulation’s data through a
single API. The AnalysisAdaptor abstarcts away the details of the analysis back-ends. This let’s the simulation invoke
all of the various analysis back-ends through a single API. When a simulation invokes an analysis back-end it passes
it a DataAdaptor that can be used to access simulation data.

DataAdaptor API

SENSEI’s data adaptor API abstracts away the differences between simulations allowing SENSEI’s transports and
analysis back ends to access data from any simulation in the same way. A simulation must implement the data adaptor
API and pass an instance when it wishes to trigger in situ processing.

Through the data adaptor API the analysis back end can get metadata about what the simulation can provide. This
metadata is examined and then the analysis can use the API to fetch only the data it needs to accomplish the tasks it
has been configured to do.

Finally the data adaptor is a key piece of SENSEI’s in transit system. The analysis back end can be run in a different
parallel job and be given an in transit data adaptor in place of the simulation’s data adaptor. In this scenario the in
transit data adaptor helps move data needed by the analysis back end. The data adaptor API enables this scenario to
appear the same to the simulation and the analysis back end. Neither simulation nor analysis need be modified for in
transit processing.

4.2. System Components 11
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Core API

Simulations need to implement the core API.

In transit API

In transit transports need to implement the in transit API.

AnalysisAdaptor API

Extending SENSEI for customized Analysis capabilities requires implementing a sensei::AnalysisAdaptor .

At a minimum one must implement the sensei::AnalysisAdaptor::Execute method. In your implementation you will
make use of the passed sensei::DataAdaptor instance to fetch the necessary simulation data.

The following template can be used to add a new C++ based analysis capability.

class MyAnalysis : public sensei::AnalysisAdaptor
{
public:

virtual bool Execute(DataAdaptor* dataIn, DataAdaptor** dataOut)
{

// YOUR ANALYSIS CODE HERE. USE THE PASSED DATA ADAPTOR TO ACCESS
// SIMULATION DATA

if (dataOut)
{

// IF YOUR CODE CAN RETURN DATA, CREATE AND RETURN A DATA
// ADAPTOR HERE THAT CAN BE USED TO ACCESS IT

*dataOut = nullptr;
}

return true;
}

};

Python API

The sensei::PythonAnalysis adaptor enables the use of a Python scripts as an analysis back end in C,C++, and Fortran
based simulation codes. It accomplishes this by embedding a Python interpreter and includes a minimal set of the
sensei python bindings. To author a new python analysis one must provide a python script that implements three
functions in a user provided Python script that is loaded at run time. The three functions are: Inititalize, Execute and
Finalize. These functions implement the sensei::AnalysisAdaptor API.

The Execute function is required while Initialize and Finalize functions are optional. The Execute function is passed
a sensei::DataAdaptor instance from which one has access to simulation data structures. If an error occurs during
processing one should raise an exception. If the analysis required MPI communication, one must make use of the
adaptor’s MPI communicator which is stored in the global variable comm. Additionally one can provide a secondary
script that is executed prior to the API functions. This script can set global variables that control runtime behavior.

End users will make use of the sensei::ConfigurableAnalysis and point to the python script containing the three func-
tions described above. The script can be loaded in one of two ways: via python’s import machinery or via a customized

12 Chapter 4. Table of Contents

https://sensei-insitu.readthedocs.io/en/latest/doxygen/classsensei_1_1_analysis_adaptor.html
https://sensei-insitu.readthedocs.io/en/latest/doxygen/classsensei_1_1_data_adaptor.html
https://sensei-insitu.readthedocs.io/en/latest/doxygen/classsensei_1_1_python_analysis.html


SENSEI Documentation, Release 4.0.0-54-g4c28c54

mechanism that reads the file on MPI rank 0 and broadcasts it to the other ranks. The latter is the recommended ap-
proach.

def Initialize():
""" Initialization code here """
return

def Execute(dataAdaptor):
""" Use sensei::DataAdaptor API to process data here """
return

def Finalize():
""" Finalization code here """
return

4.2.3 Data model

The data model is a key piece of the system. It allows data to be packaged and shared between simulations and analysis
back ends. SENSEI’s data model relies on VTK’s vtkDataObject class hierarchy to provide containers of array based
data, VTK’s conventions for mesh based data (i.e. ordering of FEM cells), and our own metadata object that is used to
describe simulation data and it’s mapping onto hardware resources.

Representing mesh based data

SENSEI makes use of VTK data object’s to represent simulation data. VTK supports a diverse set of mesh and
non-mesh based data. Figure numref :data_types shows a subset of the types of data supported in the VTK data model.

Fig. 4.3: A subset of the supported data types.

A key concept in understanding our use of VTK is that we view all data conceptually as multi-block. By multi-block
we mean that each MPI rank has zero or more blocks of data. When we say blocks we really mean chunks or pieces,
because the blocks can be anything ranging from point sets, to FEM cells, to hierarchical AMR data. to tables, to
arrays. The blocks of a multi-block are distributed across the simulation’s MPI ranks with each rank owning a subset
of the blocks. An example is depicted in figure numref :multi_block where the 2 data blocks of a multi-block dataset
are partitioned across 2 MPI ranks.

Fig. 4.4: Multi-block data. Each rank has zero or more data blocks. In VTK non-local blocks are nullptr’s.

A strength of VTK is the diversity of data sets that can be represented. A challenge that comes with this lies in VTK’s
complexity. SENSEI’s data model only relies on VTK’s common, core and data libraries reducing surface area and
complexity when dealing with VTK. While it is possible to use any class derived from vtkDataObject with SENSEI
the following data sets are supported universally by all transports and analysis back-ends.

VTK Class Description
vtkImageData Blocks of uniform Cartesian geometry
vtkRectilinearGrid Blocks of stretched Cartesian geometry
vtkUnstructuredGrid Blocks of finite element method cell zoo and particle meshes
vtkPolyData Blocks of particle meshes
vtkStructuredGrid Blocks of logically Cartesian (aka Curvilinear) geometries
vtkOverlappingAMR A collection of blocks in a block structured AMR hierarchy
vtkMultiBlockDataSet A collection of data blocks distributed across MPI ranks

4.2. System Components 13
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As mentioned VTK’s data model is both rich and complex. VTK’s capabilities go well beyond SENSEI’s universal
support. However, any dataset type derived from vtkDataObject can be used with SENSEI including those not listed
in the table above. The successful use of classes not listed in the above table depends on support implemented by the
back end or transport in question.

Representing array based data

Each block of a simulation mesh is expected to contain one or more data arrays that hold scalar, vector, and tensor
fields generated by the simulation. VTK’s data arrays are used to present array based data. VTK’s data arrays are
similar to the STL’s std::vector, but optimized for high-performance computing. One such optimization is the support
for zero-copy data transfer. With zero-copy data transfer it is possible to pass a pointer to simulation data directly to
an analysis back-end without making a copy of the data.

All of the mesh based types in VTK are derived from vtkDataSet. vtkDataSet defines the common API’s for accessing
collections of VTK data arrays by geometric centering. SENSEI supports the following two containers in all back-ends
and transports.

Class Description
vtkPointData Container of node centered arrays
vtkCellData Container of cell centered arrays

VTK data arrays support use of any C++ POD type. The two main classes of VTK data arrays of interest here are:

Class Description
vtkAOSDataArrayTemplate Use with scalar, vector and tensor data in AOS layout
vtkSOADataArrayTemplate Use with vector and tensor data in SOA layout

These classes define the API for array based data in VTK. Note the AOS layout is the default in VTK and that classes
such as vtkFloatArray, vtkDoubleArray, vtkIntArray etc are aliases to vtkAOSDataArrayTemplate. For simplicity
sake one can and should use these aliases anywhere an AOS layout is needed.

Zero-copy into VTK

The following snippet of code shows how to pass a 3 component vector field in the AOS layout from the simulation
into VTK using the zero-copy mechanism:

// VTK's default is AOS, no need to use vtkAOSDataArrayTemplate
vtkDoubleArray *aos = vtkDoubleArray::New();
aos->SetNumberOfComponents(3);
aos->SetArray(v, 3*nxy, 0);
aos->SetName("velocity");

// add the array as usual
im->GetPointData()->AddArray(aos);

// give up our reference
aos->Delete();

The following snippet of code shows how to pass a 3 component vector field in the SOA layout from the simulation
into VTK using the zero-copy mechanism:
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// use the SOA class
vtkSOADataArrayTemplate<double> *soa = vtkSOADataArrayTemplate<double>::New();
soa->SetNumberOfComponents(3);

// pass a pointer for each array
soa->SetArray(0, vx, nxy, true);
soa->SetArray(1, vy, nxy);
soa->SetArray(2, vz, nxy);
soa->SetName("velocity");

// add to the image as usual
im->GetPointData()->AddArray(soa);

// git rid of our reference
soa->Delete();

In both these examples ‘im’ is a dataset for some block in a multiblock data set.

Accessing blocks of data

This section pertains to accessing data for analysis. During analysis one may obtain a mesh from the simulation. With
the mesh in hand one can walk the blocks of data and access the array collections. Arrays in the array collection
are accessed and a pointer to the data is obtained for processing. The collections of blocks in VTK are derived from
vtkCompositeDataSet. vtkCompositeDataSet defines the API for generically access blocks via the vtkComposite-
DataIterator class. The vtkCompositeDataIterator is used to visit all data blocks local to the MPI rank.

Getting help with VTK

For those new to VTK a good place to start is the VTK user guide which contains a chapter devoted to learning VTK
data model as well as numerous examples. On the VTK community support forums volunteers, and often the VTK
developers them selves, answer questions in an effort to help new users.

Metadata

SENSEI makes use of a custom metadata object to describe simulation data and its mapping onto hardware resources.
This is in large part to support in transit operation where one must make decisions about how simulation data maps
onto available analysis resources prior to accessing the data.

Applies to Field name Purpose
entire mesh GlobalView tells if the information describes data on this rank or all ranks

MeshName name of mesh
MeshType VTK type enum of the container mesh type
BlockType VTK type enum of block mesh type
NumBlocks global number of blocks
NumBlocksLocal number of blocks on each rank
Extent global index space extent †,S,*

Bounds global bounding box *

CoordinateType type enum of point data ‡

NumPoints total number of points in all blocks *

NumCells total number of cells in all blocks *

CellArraySize total cell array size in all blocks *

Continued on next page
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Table 4.1 – continued from previous page
Applies to Field name Purpose

NumArrays number of arrays
NumGhostCells number of ghost cell layers
NumGhostNodes number of ghost node layers
NumLevels number of AMR levels (AMR)
PeriodicBoundary indicates presence of a periodic boundary
StaticMesh non zero if the mesh does not change in time

each array ArrayName name of each data array
ArrayCentering centering of each data array
ArrayComponents number of components of each array
ArrayType VTK type enum of each data array
ArrayRange global min,max of each array *

each block BlockOwner rank where each block resides *

BlockIds global id of each block *

BlockNumPoints number of points for each block *

BlockNumCells number of cells for each block *

BlockCellArraySize cell array size for each block ‡,*

BlockExtents index space extent of each block †,S,*

BlockBounds bounds of each block *

BlockLevel AMR level of each block S

BlockArrayRange min max of each array on each block *

each level RefRatio refinement ratio in i,j, and k direc-
tion S

BlocksPerLevel number of blocks in each level S

The metadata structure is intended to be descriptive and cover all of the supported scenarios. Some of the fields are
potentially expensive to generate and not always needed. As a result not all fields are used in all scenarios. Flags are
used by the analysis to specify which fields are required. The following table is used in conjunction with the above
table to define under which circumstances the specific the fields are required.

symbol required . . .
always required

* only if requested by the analysis
† with Cartesian meshes
‡ with unstructured meshes
S with AMR meshes

Simulations are expected to provide local views of metadata, and can optionally provide global views of metadata.
The GlobalView field is used to indicate which is provided. SENSEI contains utilities to generate a global view form
a local one.

Ghost zone and AMR mask array conventions

SENSEI uses the conventions defined by VisIt and recently adopted by VTK and ParaView for masking ghost zones
and covered cells in overlapping AMR data. In accordance with VTK convention these arrays must by named
svtkGhostType.

Mask values for cells and cell centered data:

16 Chapter 4. Table of Contents



SENSEI Documentation, Release 4.0.0-54-g4c28c54

Type Bit
valid cell, not masked 0
Enhanced connectivity zone 1
Reduced connectivity zone 2
Refined zone in AMR grid 3
Zone exterior to the entire problem 4
Zone not applicable to problem 5

Mask values for points and point centered data:

Type Bit
Valid node, not masked 0
Node not applicable to problem 1

For more information see the Kitware blog on ghost cells and the VisIt ghost data documentation.

Overhead due to the SENSEI data model

As in any HPC application we are concerned with the overhead associated with our design choices. To prove that we
have minimal impact on a simulation we did a series of scaling and performance analyses up to 45k cores on a Cray
supercomputer. We then ran a series of common visualization and analysis tasks up to 1M cores on second system.
The results of our experiments that showed the SENSEI API and data model have negligible impact on both memory
use and run-time of the simulation. A selection of the results are shown in figure Fig. 4.5.

Fig. 4.5: Run-time (left) and memory use (right) with (orange) and without (blue) SENSEI.

The full details of the performance and scaling studies can be found in our SC16 paper.

4.2.4 Analysis back-ends

Ascent back-end

Ascent is a many-core capable lightweight in-situ visualization and analysis infrastructure for multi-physics HPC
simulations. The SENSEI AscentAnalysisAdaptor enables simulations instrumented with SENSEI to process data
using Ascent.

SENSEI XML

The ascent back-end is activated using the <analysis type="ascent">. The supported attributes are:

attribute description
actions Path to ascent specific JSON file configuring ascent
options Path to ascent specific JSON file configuring ascent
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Back-end specific configurarion

SENSEI uses XML to select the specific back-end, in this case Ascent. The SENSEI XML will also contain references
to Ascent specific configuration files that tell Ascent what to do. These files are native to Ascent. More information
about configuring Ascent can be found in the Ascent documentation at https://ascent.readthedocs.io/en/latest/

Examples

Reaction rate in situ demo Ascent in situ demo.

Catalyst back-end

ParaView Catalyst (Catalyst) is an in situ use case library, with an adaptable application programming interface (API),
that orchestrates the delicate alliance between simulation and analysis and/or visualization tasks. It brings the renown,
scaling capabilities of VTK and ParaView to bear on the in situ use case. The analysis and visualization tasks can
be implemented in C++ or Python, and Python scripts can be crafted from scratch or using the ParaView GUI to
interactively setup Catalyst scripts (see Catalyst User Guide).

SENSEI XML Options

The Catalyst back-end is activated using the <analysis type="catalyst">.

Python Script

The supported attributes are:

attribute description
pipeline Use “pythonscript”.
filename pythonscript filename.
enabled “1” enables this back-end.

Example XML

Catalyst Python script example. This XML configures a Catalyst with a Python script that creates a pipeline(s).

<sensei>
<analysis type="catalyst" pipeline="pythonscript"

filename="configs/random_2d_64_catalyst.py" enabled="1" />
</sensei>

Back-end specific configuration

The easiest way to create a python script for Catalyst:

1. Load a sample of the data (possibly downsampled) into ParaView, including all the desired fields.

2. Create analysis and visualization pipeline(s) in ParaView by applying successive filters producing subsetted or
alternative visual metaphors of data.
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3. Define a Catalyst extracts with the menu choice Catalyst→Define Exports: this will pop up the Catalyst Export
Inspector panel.

4. Export the Catalyst Python script using the menu Catalyst→Export Catalyst Script.

The Catalyst Export Inspector reference.

Slice Fixed Pipeline

For the Catalyst slice fixed pipeline the supported attributes are:

attribute description
pipeline Use “slice”.
mesh The name of the mesh to slice.
array The data array name for coloring.
association Either “cell” or “point” data.
image-filename The filename template to write images.
image-width The image width in pixels.
image-height The image height in pixels.
slice-origin The origin to use for slicing (optional).
slice-normal The normal to use for slicing.
color-range The color range of the array (optional).
color-log Use logarithmic color scale (optional).
enabled “1” enables this back-end

Example XML

This XML configures a C++-based fixed pipeline for a slice using Catalyst.

<sensei>
<analysis type="catalyst"

pipeline="slice" mesh="mesh" array="data" association="cell"
image-filename="slice-%ts.png" image-width="1920" image-height="1080"
slice-normal="0,0,1"
color-range="0.0001,1.5" color-log="1"
enabled="1" />

</sensei>

Particles Fixed Pipeline

For the Catalyst particle fixed pipeline the supported attributes are:
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attribute description
pipeline Use “particle”.
mesh The name of the mesh to slice.
array The data array name for coloring.
association Either “cell” or “point” data.
image-filename The filename template to write images.
image-width The image width in pixels.
image-height The image height in pixels.
particle-style The representation such as: “Gaussian Blur”, “Sphere”,

“Black-edged circle”, “Plain circle”, “Triangle”, and
“Square Outline”.

particle-radius The normal to use for slicing.
color-range The color range of the array (optional).
camera-position The position of the camera (optional).
camera-focus Where the camera points (optional).
enabled “1” enables this back-end

Example XML

This XML configures a C++-based fixed pipeline for particles using Catalyst.

<sensei>
<analysis type="catalyst"

pipeline="particle" mesh="particles" array="data" association="point"
image-filename="/tmp/particles-%ts.png" image-width="1920" image-height="1080"
particle-style="Black-edged circle" particle-radius="0.5"
color-range="0.0,1024.0" color-log="0"
camera-position="150,150,100" camera-focus="0,0,0"
enabled="1" />

</sensei>

Example

Reaction rate in situ demo ParaView Catalyst in situ demo.

Histogram back-end

As a simple analysis routine, the Histogram back-end computes the histogram of the data. At any given time step,
the processes perform two reductions to determine the minimum and maximum values on the mesh. Each processor
divides the range into the prescribed number of bins and fills the histogram of its local data. The histograms are
reduced to the root process. The only extra storage required is proportional to the number of bins in the histogram.

SENSEI XML

The Histogram back-end is activated using the <analysis type="histogram">. The supported attributes are:
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attribute description
mesh The name of the mesh for histogram.
array The data array name for histogram.
association Either “cell” or “point” data.
file The filename template to write images.
bins The number of histogram bins.

Example XML

Histogram example. This XML configures Histogram analysis.

<sensei>
<analysis type="histogram"
mesh="mesh" array="data" association="cell"
file="hist.txt" bins="10"
enabled="1" />

</sensei>

Back-end specific configurarion

No special back-end configuration is necessary.

Examples

VM Demo reference.

Autocorrelation back-end

As a prototypical time-dependent analysis routine, the Autocorrelation back-end computes the autocorrelation. Given
a signal f(x) and a delay t, we find ∑︁

𝑥

𝑓(𝑥)𝑓(𝑥+ 𝑡).

Starting with an integer time delay t, we maintain in a circular buffer, for each grid cell, a window of values of the
last t time steps. We also maintain a window of running correlations for each t t. When called, the analysis updates
the autocorrelations and the circular buffer. When the execution completes, all processes perform a global reduction
to determine the top k autocorrelations for each delay t t (k is specified by the user). For periodic oscillators, this
reduction identifies the centers of the oscillators.

SENSEI XML

The Autocorrelation back-end is activated using the <analysis type="autocorrelation">. The supported
attributes are:
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attribute description
mesh The name of the mesh for autocorrelation.
array The data array name for autocorrelation.
association Either “cell” or “point” data.
window The delay (t) for f(x).
k-max The number of strongest autocorrelations to report.

Example XML

Autocorrelation example. This XML configures Autocorrelation analysis.

<sensei>
<analysis type="autocorrelation"
mesh="mesh" array="data" association="cell"
window="10" k-max="3" enabled="1" />

</sensei>

Examples

VM Demo reference.

4.2.5 In transit transport layers and I/O

In transit data adaptor & control API

ADIOS-1

(Burlen)

ADIOS-2

(J.Logan)

Libis

(Silvio)

Data elevators

(Junmin)
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4.2.6 Partitioners

4.2.7 The SENSEI end-point

4.3 Miniapps

4.3.1 oscillator

The oscillator mini-application computes a sum of damped, decaying, or periodic oscillators, convolved with (un-
normalized) Gaussians, on a grid. It could be configured as a proxy for simulation of a chemical reaction on a
two-dimensional substrate (see Chemical reaction on a 2D substrate).

option description
-b, –blocks INT Number of blocks to use [default: 1].
-s, –shape POINT Number of cells in the domain [default: 64 64 64].
-e, –bounds FLOAT Bounds of the Domain [default: {0,-1,0,-1,0,-1]}.
-t, –dt FLOAT The time step [default: 0.01].
-f, –config STRING SENSEI analysis configuration xml (required).
-g, –ghost-cells INT Number of ghost cells [default: 1].
–t-end FLOAT Request synchronize after each time step.
-j, –jobs INT Number of threads [default: 1].
-o, –output STRING Prefix for output [default: “”].
-p, –particles INT Number of particles [default: 0].
-v, –v-scale FLOAT Gradient to Velocity scale factor [default: 50].
-r, –seed INT Random seed [default: 1].
–sync The end time [default: 10].
-h, –help Show help.

The oscillators’ locations and parameters are specified in an input file (see input folder for examples).

Note that the generate_input script can generate a set of randomly initialized oscillators.

The simulation code is in main.cpp while the computational kernel is in Oscillator.cpp.

To run:

There are a number of examples available in the SENSEI repositoory that leverage the oscillator mini-application.

4.3.2 newton

4.3.3 mandelbrot

4.4 Examples

4.4.1 Chemical reaction on a 2D substrate

This example illustrates how to select different back-ends at run time via XML, and how to switch in between in situ
mode where the analysis runs in the same address space as the simulation and in transit mode where the analysis runs
in a separate application called an end-point potentially on a different number of MPI ranks.

This example makes use of the oscillator mini-app configured as a proxy for simulation of a chemical reaction on a
2D substrate. The example uses different back-ends to make a pseudo coloring of the reaction rate with an iso-contour
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of 1. The Python analysis computes the area of the substrate where the reaction rate is greater or equal to 1 and plots
it over time.

In situ demos

In this part of the demo XML files are used to switch back-end data consumer. The back-end data consumers are
running in the same process as the simulation. This enables the use of zero-copy data transfer between the simulation
and data consumer.

Ascent in situ demo

Fig. 4.6: A pseudocolor plot rendered by Ascent of the rectaion rate field with an iso-contour plotted at a reaction rate
of 1.0.

In the demo data from the reaction rate proxy simulation is processed using Ascent. Ascent is selected at run time via
the following SENSEI XML:

<sensei>
<analysis type="ascent" actions="configs/random_2d_64_ascent.json" enabled="1" >
<mesh name="mesh">

<cell_arrays> data </cell_arrays>
</mesh>

</analysis>
</sensei>

XML to select the Ascent back-end and configure it using a Ascent JSON
configuration

The analysis element selects Ascent, the actions attribute points to the Ascent specific configuration. In this case a
JSON configuration. The following shell script runs the demo on the VM.

#!/bin/bash

n=4
b=64
dt=0.25
bld=`echo -e '\e[1m'`
red=`echo -e '\e[31m'`
grn=`echo -e '\e[32m'`
blu=`echo -e '\e[36m'`
wht=`echo -e '\e[0m'`

echo "+ module load sensei/3.1.0-ascent-shared"
module load sensei/3.1.0-ascent-shared

set -x

export OMP_NUM_THREADS=1

cat ./configs/random_2d_${b}_ascent.xml | sed "s/.*/$blu&$wht/"

mpiexec -n ${n} \
oscillator -b ${n} -t ${dt} -s ${b},${b},1 -g 1 -p 0 \

(continues on next page)
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(continued from previous page)

-f ./configs/random_2d_${b}_ascent.xml \
./configs/random_2d_${b}.osc 2>&1 | sed "s/.*/$red&$wht/"

During the run Ascent is configured to render a pseudocolor plot of the reaction rate field. The plot includes an
iso-contour where the reaction rate is 1.

ParaView Catalyst in situ demo

Fig. 4.7: A pseudocolor plot rendered by ParaView Catalyst of the rectaion rate field with an iso-contour plotted at a
reaction rate of 1.0.

In the demo data from the reaction rate proxy simulation is processed using ParaView Catalyst. Catalyst is selected at
run time via the following SENSEI XML:

<sensei>
<analysis type="catalyst" pipeline="pythonscript"
filename="configs/random_2d_64_catalyst.py" enabled="1" />

</sensei>

The analysis element selects ParaView Catalyst, the filename attribute points to the Catalyst specific configuration. In
this case a Python script that was generated using the ParaView GUI. The following shell script runs the demo on the
VM.

#!/bin/bash

n=4
b=64
dt=0.25
bld=`echo -e '\e[1m'`
red=`echo -e '\e[31m'`
grn=`echo -e '\e[32m'`
blu=`echo -e '\e[36m'`
wht=`echo -e '\e[0m'`

echo "+ module load sensei/3.0.0-catalyst-shared"
module load sensei/3.0.0-catalyst-shared

set -x

cat ./configs/random_2d_${b}_catalyst.xml | sed "s/.*/$blu&$wht/"

mpiexec -n ${n} \
oscillator -b ${n} -t ${dt} -s ${b},${b},1 -g 1 -p 0 \
-f ./configs/random_2d_${b}_catalyst.xml \
./configs/random_2d_${b}.osc 2>&1 | sed "s/.*/$red&$wht/"

During the run ParaView Catalyst is configured to render a pseudocolor plot of the reaction rate field. The plot includes
an iso-contour where the reaction rate is 1.

VisIt Libsim in situ demo

In the demo data from the reaction rate proxy simulation is processed using VisIt Libsim. Libsim is selected at run
time via the following SENSEI XML:
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Fig. 4.8: A pseudocolor plot rendered by VisIt Libsim of the rectaion rate field with an iso-contour plotted at a reaction
rate of 1.0.

<sensei>
<analysis type="libsim" mode="batch" frequency="1"

session="configs/random_2d_64_libsim.session"
image-filename="random_2d_64_libsim_%ts"
image-width="800" image-height="800" image-format="png"
options="-debug 0" enabled="1" />

</sensei>

The analysis element selects VisIt Libsim, the filename attribute points to the Libsim specific configuration. In this
case a session file that was generated using the VisIt GUI. The following shell script runs the demo on the VM.

#!/bin/bash

n=4
b=64
dt=0.25
bld=`echo -e '\e[1m'`
red=`echo -e '\e[31m'`
grn=`echo -e '\e[32m'`
blu=`echo -e '\e[36m'`
wht=`echo -e '\e[0m'`

echo "+ module load sensei/3.0.0-libsim-shared"
module load sensei/3.0.0-libsim-shared

set -x

cat ./configs/random_2d_${b}_libsim.xml | sed "s/.*/$blu&$wht/"

mpiexec -n ${n} \
oscillator -b ${n} -t ${dt} -s ${b},${b},1 -g 1 -p 0 \
-f ./configs/random_2d_${b}_libsim.xml \
./configs/random_2d_${b}.osc 2>&1 | sed "s/.*/$red&$wht/"

Shell script that runs the Libsim in situ demo on the VM.

During the run VisIt Libsim is configured to render a pseudocolor plot of the reaction rate field. The plot includes an
iso-contour where the reaction rate is 1.

Python in situ demo

Fig. 4.9: A plot of the time history of the area of the 2D substrate where the reaction rate is greater or equal to 1.0.

In the demo data from the reaction rate proxy simulation is processed using Python. Python is selected at run time via
the following SENSEI XML:

<sensei>
<analysis type="python" script_file="configs/volume_above_sm.py" enabled="1">
<initialize_source>

threshold=1.0

(continues on next page)
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(continued from previous page)

mesh='mesh'
array='data'
cen=1
out_file='random_2d_64_python.png'

</initialize_source>
</analysis>

</sensei>

The analysis element selects Python, the script_file attribute points to the user provided Python script and initial-
ize_source contains run time configuration. The following shell script runs the demo on the VM.

#!/bin/bash

n=4
b=64
dt=0.01
bld=`echo -e '\e[1m'`
red=`echo -e '\e[31m'`
grn=`echo -e '\e[32m'`
blu=`echo -e '\e[36m'`
wht=`echo -e '\e[0m'`

export MPLBACKEND=Agg

echo "+ module load sensei/3.0.0-vtk-shared"
module load sensei/3.0.0-vtk-shared

set -x

cat ./configs/random_2d_${b}_python.xml | sed "s/.*/$blu&$wht/"

mpiexec -n ${n} oscillator -b ${n} -t ${dt} -s ${b},${b},1 -p 0 \
-f ./configs/random_2d_${b}_python.xml \
./configs/random_2d_${b}.osc 2>&1 | sed "s/.*/$red&$wht/"

During the run this user provided Python script computes the area of the 2D substrate where the reaction rate is greater
or equal to 1. The value is stored and at the end of the run a plot of the time history is made.

In transit demos

ParaView Catalyst

VisIt Libsim

Ascent

Python

4.4.2 Building Pipelines

Pipelines of in situ and in transit operations can be constructed by chaining sensei::AnalysisAdaptors using C++ or
Python.
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The following example shows a SENSEI PythonAnalysis script that configures and executes a simple pipeline that cal-
culates a set of iso-surfaces using SENSEI’s SliceExtract and then writes them to disk using SENSEI’s VTKPosthocIO
analysis adaptor.

from sensei import SliceExtract, VTKPosthocIO
from svtk import svtkDataObject
import sys

# control
meshName = None
arrayName = None
arrayCen = None
isoVals = None
outputDir = None

# state
slicer = None
writer = None

def Initialize():
global slicer,writer
if comm.Get_rank() == 0:

sys.stderr.write('PipelineExample::Initialize\n')
sys.stderr.write('meshName=%s, arrayName=%s, arrayCen=%d, '

'isoVals=%s, outputDir=%s\n'%(meshName,
arrayName, arrayCen, str(isoVals), outputDir))

slicer = SliceExtract.New()
slicer.EnableWriter(0)
slicer.SetOperation(SliceExtract.OP_ISO_SURFACE)
slicer.SetIsoValues(meshName, arrayName, arrayCen, isoVals)
slicer.AddDataRequirement(meshName, arrayCen, [arrayName])

writer = VTKPosthocIO.New()
writer.SetGhostArrayName('ghosts')
writer.SetOutputDir(outputDir)
writer.SetWriter(VTKPosthocIO.WRITER_VTK_XML)
writer.SetMode(VTKPosthocIO.MODE_PARAVIEW)

def Execute(daIn):
if comm.Get_rank() == 0:

sys.stderr.write('PipelineExample::Execute %d\n'%(daIn.GetDataTimeStep()))

# stage 1 - iso surface
isoOk, iso = slicer.Execute(daIn)

if not isoOk:
return 0

# stage 2 - write the result
writer.Execute(iso)

return 1

def Finalize():
if comm.Get_rank() == 0:

sys.stderr.write('PipelineExample::Finalize\n')

(continues on next page)
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(continued from previous page)

slicer.Finalize()
writer.Finalize()

For the purposes of this demo, the above Python script is stored in a file named “iso_pipeline.py” and refered to in the
XML used to configure the system. The XML used to configure the system to run the iso-surface and write pipeline is
shown below:

<sensei>
<analysis type="python" script_file="iso_pipeline.py" enabled="1">
<initialize_source>

meshName = 'mesh'
arrayName = 'data'
arrayCen = svtkDataObject.CELL
isoVals = [-0.619028, -0.0739720000000001, 0.47108399999999995, 1.01614]
outputDir = 'oscillator_iso_pipeline_%s'%(meshName)

</initialize_source>
</analysis>

</sensei>

The variables meshName, arrayName, arrayCen, isoVals, and outputDir are used to configure for a specific simulation
or run. For the purposes of this demo this XML is stored in a file name iso_pipeline.xml and passed to the SENSEI
ConfigurableAnalaysis adaptor during SENSEI initialization.

One can run the above pipeline with the oscillator miniapp that ships with SENSEI using the following shell script.

#!/bin/bash

module load mpi/mpich-x86_64
module use /work/SENSEI/modulefiles/
module load sensei-vtk

mpiexec -np 4 oscillator -t .5 -b 4 -g 1 -f iso_pipeline.xml simple.osc
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Software Tools to Enable Immersive Simulation

Felix Newberry, Corey Wetterer-Nelson, John A Evans, Alireza Doostan, Kenneth E Jansen

Full Text

Link to the full text PDF.

Abstract

There are two main avenues to design space exploration. In the first approach, a simulation is run, analyzed, the
problem modified, and the simulation run again. In the second approach, an ensemble simulation is performed and the
battery of results is leveraged to construct a surrogate model for a given quantity of interest (QoI). The first approach
allows a practitioner to methodically move through the design space and analyze a solution field. A disadvantage
of this technique is that each new simulation requires time consuming setup. The second approach provides the
practitioner with a global view of the problem, but requires a priori design space limits and the QoI specification.
In this work we introduce an immersive simulation software frame- work that enables practitioners to maintain the
flexibility of the first approach, while eliminating the burden of setting up new simulations. Immersive simulation
can also be used to inform the second approach, establishing limits and clarify- ing QoI selection prior to the launch
of an ensemble simulation. We demonstrate live, reconfigurable visualization of on-going simulations coupled with
live, reconfigurable problem definition that guides users in determining problem parameters. Ultimately, an immersive
simulation framework enables more efficient design space exploration that reduces the gap between simulations, data
analysis and insight ex- traction.

Improving Performance of M-to-N Processing and Data Redistribution in In Transit Analysis and
Visualization

B. Loring 1, M. Wolf, J. Kress 2, S. Shudler, J. Gu , S. Rizzi, J. Logan, N. Ferrier, and E. W. Bethel

Full Text

Link to the full text PDF .

Abstract

In an in transit setting, a parallel data producer, such as a numerical simulation, runs on one set of ranks M, while
a data consumer, such as a parallel visualization application, runs on a different set of ranks N. One of the central
challenges in this in transit setting is to determine the mapping of data from the set of M producer ranks to the set
of N consumer ranks. This is a challenging problem for several reasons, such as the producer and consumer codes
potentially having different scaling characteristics and different data models. The resulting mapping from M to N
ranks can have a significant impact on aggregate application performance. In this work, we present an approach for
performing this M-to-N mapping in a way that has broad applicability across a diversity of data producer and consumer
applications. We evaluate its design and performance with a study that runs at high concurrency on a modern HPC
platform. By leveraging design characteristics, which facilitate an “intelligent” mapping from M-to-N, we observe
significant performance gains are possible in terms of several different metrics, including time-to-solution and amount
of data moved.
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Instrumenting multiphysics blood flow simulation codes for in situ visualization and analysis

Anthony Bucaro, Connor Murphy, Nicola Ferrier, Joseph Insley, Victor Mateevitsi, Michael E Papka, Silvio Rizzi,
Jifu Tan

Full Text

Link to the full text PDF.

Abstract

Blood flow simulations have important applications in engineering and medicine, requiring visualization and analysis
for both fluid (blood plasma) and solid (cells). Recent advances in blood flow simulations highlight the need of a
more efficient analysis of large data sets. Traditionally, analysis is performed after a simulation is completed, and any
changes of simulation settings require running the simulation again. With bi-directional in situ analysis we aim to
solve this problem by allowing manipulation of simulation parameters in run time. In this project, we describe our
early steps toward this goal and present the in situ instrumentation of two coupled codes for blood flow simulation
using the SENSEI in situ framework.

Spack meets singularity: creating movable in-situ analysis stacks with ease

Sergei Shudler, Nicola Ferrier, Joseph Insley, Michael E Papka, Silvio Rizzi

Full Text

Link to the full text PDF.

Abstract

In situ data analysis and visualization is a promising technique to handle the enormous amount of data an extreme-scale
application produces. One challenge users often face in adopting in situ techniques is setting the right environment
on a target machine. Platforms such as SENSEI require complex software stacks that consist of various analysis
packages and visualization applications. The user has to make sure all these prerequisites exist on the target machine,
which often involves compiling and setting them up from scratch. In this paper, we leverage the containers technology
(eg, light-weight virtualization images) and provide users with Singularity containers that encapsulate ready-to-use,
movable in situ software stacks. Moreover, we make use of Spack to ease the process of creating these containers.
Finally, we evaluate this solution by running in situ analysis from within a container on an HPC system.

Fast Mesh Validation in Combustion Simulations through In-Situ Visualization.

Sergei Shudler, Nicola J Ferrier, Joseph A Insley, Michael E Papka, Saumil Patel, Silvio Rizzi

Full Text

Link to the full text PDF.
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Abstract

In situ visualization and analysis is a powerful concept that aims to give users the ability to process data while it is
still resident in memory, thereby vastly reducing the amount of data left for posthoc analysis. The problem of having
too much data for posthoc analysis is exacerbated in large-scale high-performance computing applications such as
Nek5000, a massively-parallel CFD (Computational Fluid Dynamics) code used primarily for thermal hydraulics
problems. Specifically, one problem users of Nek5000 often face is validating the mesh, that is identifying the exact
location of problematic mesh elements within the whole mesh. Employing the standard posthoc approach to address
this problem is both time consuming and requires vast storage space. In this paper, we demonstrate how in situ
visualization, produced with SENSEI, a generic in situ platform, helps users quickly validate the mesh. We also
provide a bridge between Nek5000 and SENSEI that enables users to use any existing and future analysis routines in
SENSEI. The approach is evaluated on a number of realistic datasets

Low-overhead in situ visualization using halo replay

Jeff Ames, Silvio Rizzi, Joseph Insley, Saumil Patel, Benjamín Hernández, Erik W Draeger, Amanda Randles

Full Text

Link to the full text PDF.

Abstract

In situ visualization and analysis is of increasing importance as the compute and I/O gap further widens with the
advance to exascale capable computing. Yet, currently in situ methods impose resource constraints leading to the
difficult task of balancing simulation code performance and the quality of analysis. Applications with tightly-coupled
in situ visualization often achieve performance through spatial and temporal downsampling, a tradeoff which risks not
capturing transient phenomena at sufficient fidelity. Determining a priori visualization parameters such as sampling
rate is difficult without time and resource intensive experimentation. We present a method for reducing resource con-
tention between in situ visualization and stencil codes on heterogeneous systems. This method permits full-resolution
replay through recording halos and the communication-free reconstruction of interior values uncoupled from the main
simulation. We apply this method in the computational fluid dynamics (CFD) code HARVEY on the Summit super-
computer. We demonstrate minimal overhead, in situ visualization relative to simulation alone, and compare the Halo
Replay performance to tightly-coupled in situ approaches.

Python-based In Situ Analysis and Visualization

Burlen Loring, Andrew Myers, David Camp, E. Wes Bethel

Full Text

Link to the full text PDF.

Abstract

This work focuses on enabling the use of Python-based methods for the purpose of performing in situ analysis and
visualization. This approach facilitates access to and use of a rapidly growing collection of Python-based, third-party
libraries for analysis and visualization, as well as lowering the barrier to entry for userwritten Python analysis codes.
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Beginning with a simulation code that is instrumented to use the SENSEI in situ interface, we present how to couple
it with a Python-based data consumer, which may be run in situ, and in parallel at the same concurrency as the
simulation. We present two examples that demonstrate the new capability. One is an analysis of the reaction rate in a
proxy simulation of a chemical reaction on a 2D substrate, while the other is a coupling of an AMR simulation to Yt,
a parallel visualization and analysis library written in Python. In the examples, both the simulation and Python in situ
method run in parallel on a large-scale HPC platform.

In situ visualization and analysis to design large scale experiments in computational fluid dynamics

Bennett Bernardoni, Nicola Ferrier, Joseph Insley, Michael E Papka, Saumil Patel, Silvio Rizzi

Full Text

Link to the full text PDF.

Abstract

Nek5000 is a massively-parallel computational fluid dynamics code, which is widely used and researched, including as
part of a co-design center of the Exascale Computing Project (ECP). As computation capacity reaches exascale, storage
bandwidth remains stable leading to a larger percentage of time spent performing I/O. In situ analysis overcomes this
issue by processing the data before it is written to disk. One method for accomplishing in situ analysis is through
SENSEI, a generic in situ interface that enables the use of many existing in situ infrastructures with little modification
to the simulation. In this work, we present the instrumentation of Nek5000 with SENSEI and evaluate its ability to
accelerate the development of large scale simulation campaigns.

libIS: a lightweight library for flexible in transit visualization

Will Usher, Silvio Rizzi, Ingo Wald, Jefferson Amstutz, Joseph Insley, Venkatram Vishwanath, Nicola Ferrier, Michael
E Papka, Valerio Pascucci

Full Text

Link to the full text PDF.

Abstract

As simulations grow in scale, the need for in situ analysis methods to handle the large data produced grows corre-
spondingly. One desirable approach to in situ visualization is in transit visualization. By decoupling the simulation
and visualization code, in transit approaches alleviate common difficulties with regard to the scalability of the analysis,
ease of integration, usability, and impact on the simulation. We present libIS, a lightweight, flexible library which low-
ers the bar for using in transit visualization. Our library works on the concept of abstract regions of space containing
data, which are transferred from the simulation to the visualization clients upon request, using a client-server model.
We also provide a SENSEI analysis adaptor, which allows for transparent deployment of in transit visualization. We
demonstrate the flexibility of our approach on batch analysis and interactive visualization use cases on different HPC
resources.
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In Situ Summarization with VTK-m

David Thompson, Sebastien Jourdain, Andrew Bauer, Berk Geveci, Robert Maynard, Ranga Raju Vatsavai, and Patrick
O’Leary

Full Text

Link to the full text PDF.

Abstract

Summarization and compression at current and future scales requires a framework for developing and benchmarking
algorithms. We present a framework created by integrating existing, production- ready projects and provide timings
of two particular algorithms that serve as exemplars for summarization: a wavelet-based data reduction filter and a
generator for creating image-like databases of extracted features (isocontours in this case). Both support browser-
based, post-hoc, interactive visualization of the summary for decision- making. A study of their weak-scaling on a
distributed multi-GPU system is included.

Fig. 4.10: VTKm’s architecture lazily transfers arrays to streaming processors for analysis.

Summarization Examples

Performance Analysis, Design Considerations, and Applications of Extreme-scale In Situ Infrastruc-
tures

Utkarsh Ayachit, Andrew Bauer, Earl P. N. Duque, Greg Eisenhauer, Nicola Ferrier, Junmin Gu, Kenneth E. Jansen,
Burlen Loring, Zarija Lukic , Suresh Menon, Dmitriy Morozov, Patrick O’Leary, Reetesh Ranjan, Michel Rasquin,
Christopher P. Stone, Venkat Vishwanath, Gunther H. Weber, Brad Whitlock, Matthew Wolf, K. John Wu, and E. Wes
Bethel

Full Text

Link to the full text PDF.
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Fig. 4.11: Data Reduction - (a) By running a Haar wavelet filter multiple times, we can reduce the volume to a fixed
size that is appropri- ate for rendering in a browser via ArcticViewer (depicted in Figure 5b). (b) Our wavelet-based
reduction pipeline uses VTKm to compute multiple passes of the DHW transform. Circular dots indicate a zero-
copy handoff of data. The tri- angle and diamond indicate where VTKm and VTK transfer data to/from the GPU,
respectively.
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Fig. 4.12: Isocontours - Complex periodic system composed of a grid of nine big oscillators and four interleaved
smaller ones with various frequencies. Visualizations via (a) translucent contours and (b) in-browser volume rendering.

Fig. 4.13: Isocontours - Our visual summary rendering pipeline uses VTKm to compute renderings of isocontours.
Circular dots indicate a zero-copy handoff of data. The triangle and dia- mond indicate where VTKm and VTK transfer
data to/from the GPU, respectively.
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Abstract

A key trend facing extreme-scale computational science is the widening gap between computational and I/O rates, and
the challenge that follows is how to best gain insight from simulation data when it is increasingly impractical to save it
to persistent storage for subsequent visual exploration and analysis. One approach to this challenge is centered around
the idea of in situ processing, where visualization and analysis processing is performed while data is still resident in
memory. This paper examines several key design and performance issues related to the idea of in situ processing at
extreme scale on modern platforms: scalability, overhead, performance measurement and analysis, comparison and
contrast with a traditional post hoc approach, and interfacing with simulation codes. We illustrate these principles in
practice with studies, conducted on large-scale HPC platforms, that include a miniapplication and multiple science
application codes, one of which demonstrates in situ methods in use at greater than 1M-way concurrency.

Mini-Application

As a prototypical data source, we implemented a miniapplication, an MPI code in C++, that simulates a collection of
periodic, damped, or decaying oscillators. Placed on a grid, each oscillator is convolved with a Gaussian of a prescribed
width. The oscillator parameters are specified as the input, which is read and broadcast from the root process. The user
also specifies the time resolution, duration of the simulation, and the dimensions of the grid, partitioned between the
processes using regular decomposition. The code iteratively fills the grid cells with the sum of the convolved oscillator
values; the computation on each rank takes O(mN3) per time step, where m is the number of oscillators and N3 is the
size of the subgrid on the rank. The computation is embarrassingly parallel; optionally, the ranks may synchronize
after every time step, but this synchronization is off in the experiments below.

Pipelines

The miniapplication test configurations, listed below, show the various combinations of the oscillator miniapplica-
tion, in situ the ParaView/Catalyst, VisIt/Libsim, and ADIOS infrastructures, different in situ analysis methods, and
with/without use of the SENSEI data interface.

PipelineDescription
Orig-
inal

miniapplication with no SENSEI interface and no I/O. In some test configurations, we do perform in situ
analysis, but that coupling is done directly via subroutine call and does not use any in situ interface. The
distinction of with vs. without analysis will be called out when needed in the subsections that follow.

Base-
line

miniapplication with SENSEI interface enabled, but no in situ analysis or I/O. This configuration is useful
in measuring the overhead of the SENSEI data interface in isolation from other processing.

His-
togram

miniapplication with the SENSEI interface enabled, and connected directly to an in situ histogram calcu-
lation, but without any of the in situ infrastructures.

Auto-
cor-
rela-
tion

miniapplication with the SENSEI interface enabled, and connected directly to an in situ autocorrelation
calculation, but without any of the in situ infrastructures.

Catalyst-
slice

miniapplication with SENSEI interface enabled, and connected to Catalyst, which performs in situ ren-
dering of a 2D slice from a 3D volume, then writes the image to disk.

Libsim-
slice

miniapplication with SENSEI interface enabled, and connected to Libsim, which performs in situ render-
ing of a 2D slice from a 3D volume, then writes the image to disk.

ADIOS-
FlexPath

miniapplication with SENSEI interface en- abled, and connected to the ADIOS FlexPath in situ infrastruc-
ture. Within this miniapplication/in situ infrastructure combination, we further refine the configuration in
§§4.1.4 to include in situ workloads for histogram, autocorrelation, and Catalyst-slice.
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Science Application Examples

Fig. 4.14: Computational Fluid Dynamics - The Evolution of Temporal Mixing Layer from Initial to Vortex Breakdown
using AVF-LESLIE.

Fig. 4.15: Computational Cosmology - Time steps 200 and 300 of the 10243 Nyx Lyman 𝛼 forest simulation. Sim-
ulations often only save every 100th time step. The difference between these time steps is considerable, hampering
feature tracking.

Fig. 4.16: Computational Fluid Dynamics - 6.33 Billion element grid with 1,048,576 MPI ranks on 32,768 nodes (32
MPI ranks per node) with output size of 2900x725 and 30 time steps.

The SENSEI Generic In Situ Interface

Utkarsh Ayachit, Brad Whitlock, Matthew Wolf, Burlen Loring, Berk Geveci, David Lonie, and E. Wes Bethel

Full Text

Link to the full text PDF.
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Abstract

The SENSEI generic in situ interface is an API that promotes code portability and reusability. From the simulation
view, a developer can instrument their code with the SENSEI API and then make make use of any number of in situ
infrastructures. From the method view, a developer can write an in situ method using the SENSEI API, then expect
it to run in any number of in situ infrastructures, or be invoked directly from a simulation code, with little or no
modification. This paper presents the design principles underlying the SENSEI generic interface, along with some
simplified coding examples.

Interface Design

Data Model: A key part of the design of the common interface was a decision on a common data description model.
Our choice was to extend a variant on the VTK data model. There were several reasons for this choice. The VTK
data model is already widely used in applications like VisIt and ParaView, which are important codes for the post-
hoc development of the sorts of analysis and visualization that are required in situ. The VTK data model has native
support for a plethora of common scientific data structures, including regular grids, curvilinear grids, unstructured
grids, graphs, tables, and AMR. There is also already a dedicated community looking to carry forward VTK to exascale
computing, so our efforts can cross-leverage those.

Despite its many strengths, there were some key additions we wanted for the SENSEI model. To minimize effort and
memory overhead when mapping memory layouts for data arrays from applications to VTK, we extended the VTK
data model to support arbitrary layouts for multicomponent arrays through a new API called generic arrays. Through
this work, this capability has been back-ported to the core VTK data model. VTK now natively supports the commonly
encountered structure-of-arrays and array-of-structures layouts utilizing zero-copy memory techniques.

Interface: The SENSEI interface comprises of three components: data adaptor that helps map sim data to VTK data
model, analysis adaptor that maps VTK data model for analysis methods, and in situ bridge that links together the data
adaptor and the analysis adaptor, and provides the API that the simulation uses to trigger the in situ analysis.

The data adaptor defines an API to access the simulation data as VTK data objects. The analysis adaptor uses this API
to access the data to pass to the analysis method. To instrument a simulation code for SENSEI, one has to provide
a concrete implementation for this data adaptor API. The API treats connectivity and attribute array information
separately, providing specific API calls for requesting each. This helps to avoid compute cycles needed to map the
connectivity and/or data attributes to the VTK data model unless needed by active analysis methods.

The analysis adaptor’s role is to take the data adaptor and pass the data to the analysis method, doing any transfor-
mations as necessary. For a specific analysis method, the analysis adaptor is provided the data adaptor in its Execute
method. Using the sensei::DataAdaptor API, the analysis adaptor can obtain the mesh (geometry, and connectivity)
and attribute or field arrays necessary for the analysis method.
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4.5.2 Tutorials and Examples

SENSEI + AMReX

Synopsis

AMReX is a freely available simulation software framework designed to enable massively parallel block-structured
adaptive mesh refinement (AMR) applications.

The AMReX Tutorials repository houses several tutorial examples demonstrating the use of SENSEI in AMReX based
simulation codes. The full list of tutorials are documented here.
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Overview

Two distinct tutorial examples are available with multiple configurations:

Name Description
Ad-
vec-
tion_AmrCore

This tutorial illustrates an explicit SENSEI instrumentation of a code that makes use of amrex::AmrMesh.

Ad-
vec-
tion_AmrLevel

This tutorial illustrates 3 scenarios with a code that makes use of amrex::Amr. The first, ImplcitAmr,
illustrates using SENSEI with the built-in instrumentation in amrex::Amr. The second, ExplcitAmr, il-
lustrates using SENSEI with an explicit instrumentation. The third, ExplicitParticlesAndAmr, illustrates
using SENSEI from a simulation that generates both particle and meshed based data.

Note that the Advection_AmrLevel contains code for 3 different scenarios. Which of these is active/available depends
on how AMReX is compiled. See below for the details on configuring the build.

Setting Up

Compiling the AMReX SENSEI tutorials requires that SENSEI is previously installed. The options that SENSEI
was built with determine the specific in situ capabilities available. Additional CMake options must also be passed
when compiling AMReX to activate the SENSEI bridge and adaptors bundled with AMReX. The AMReX library is
available on GitHub.

Build options

The options that AMReX is compiled with determine which SENSEI tutorials are available. The following table
summarizes the various combinations and results.

CMake Options What gets built
-DAMReX_SENSEI=ON -DAMReX_FORTRAN=ON
-DSENSEI_DIR=<path to install>

Enables SENSEI features in AMReX. Required to
compile SENSEI tutorials. Enables the AmrCore
tutorial and AmrLevel implicit tutorial.

-DAMReX_SENSEI=ON -DAMReX_PARTICLES=ON
-DAMReX_NO_SENSEI_AMR_INST=TRUE -
DAMReX_FORTRAN=ON -DSENSEI_DIR=<path to
install>

Enables the AmrCore tutorial, AmrLevel explicit
tutorial, and particle based tutorials to be com-
piled.

-DAMReX_SENSEI=ON -
DAMReX_NO_SENSEI_AMR_INST=TRUE -
DAMReX_FORTRAN=ON -DSENSEI_DIR=<path to
install>

Enables the AmrCore tutorial, AmrLevel explicit
tutorial.

Running the Example

Once the tutorials are compiled they can be run from their corresponding directory. The executable is passed an AM-
ReX parm-parse inputs file configuring the run. Options inside the inputs file configure the SENSEI instrumentation
inside AMReX. Additionally SENSEI needs to configure the back-end that will process the data generated. This is
done with a SENSEI XML file. Within each tutorial the sensei directory contains a number of SENSEI XML con-
figuration files. The inputs file must be modified to point to one of these. Which one depends on how SENSEI was
compiled. For instance the following snippet from an inputs file would configure SENSEI to send data to ParaView
Catalyst,
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sensei.enabled = 1 # turn SENSEI in situ on/off
sensei.config = sensei/render_iso_catalyst_3d.xml # render simulation data with
→˓ParaView Catalyst
sensei.frequency = 1 # number of level 0 steps between
→˓in situ processing

while the following snippet would configure SENSEI to send data to VisIt Libsim,

sensei.enabled = 1 # turn SENSEI in situ on/off
sensei.config = sensei/render_iso_libsim_3d.xml # render simulation data with
→˓ParaView Catalyst
sensei.frequency = 1 # number of level 0 steps between
→˓in situ processing

There are a number of XML files providing the configuration for a number of the available back-ends. A given SENSEI
XML configuration is only valid when the SENSEI install has been compiled with the requisite back-end enabled.

Note that the Advection_AmrLevel_ExplicitParticlesAndAmr uses the file inputs.tracers while the others use the file
inputs.

The tutorials are run by switching into the tutorial’s build directory and issuing the launching command. For instance
the Advection_AmrLevel_ImplicitAmr tutorial is launched by a command similar to:

mpiexec -np 4 ./Advection_AmrLevel_ImplicitAmr inputs

Results

Computational Steering with Catalyst and SENSEI

Synopsis

In this example, we demonstrate using SENSEI with a bidirectional Catalyst 1.0 Analysis Adaptor to perform compu-
tational steering. Here, we employ the oscillator miniapp. The list of oscillator objects are exposed to Catalyst where
each oscillator can be manipulated. Position of oscillators as well as oscillator properties can be modified on the fly,
changing the behavior of the simulated domain.

Setting Up

You will need ParaView 5.10 installed, and SENSEI compiled with the options ENABLE_CATALYST and EN-
ABLE_CATALYST_PYTHON turned on.

Note, only Catalyst 1.0 scripts are compatible with computational steering in SENSEI. Unfortunately, those scripts
cannot be generated automatically in the most recent editions of ParaView. The provided example script can be
modified manually for your own purposes.

Running the Example

Open the ParaView application and navigate to Tools->‘Manage Plugins‘. Press the Load New. . . button, and navigate
the file browser to the location of the oscillator_catalyst_steering_proxies.xml file, and select that file.

Next, navigate to Catalyst->‘Connect‘ and accept incoming connections on port 22222. This will tell ParaView to
begin listening for Catalyst connections on that port. If a different port number is desired, you will need to edit the
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port number in the Catalyst python script oscillator_catalyst_steering.py to the desired port, and then start Catalyst in
ParaView with the same desired port number.

In a terminal, navigate to your desired run directory (this testing directory is fine to run from), and start the oscilla-
tor miniapp with the SENSEI config xml oscillator_catalyst_steering.xml. Oscillator miniapp options can be set as
desired, but a good starting point is:

$ mpirun -np 1 /path/to/oscillator -g 1 -t 0.01 -f oscillator_catalyst_steering.xml
→˓simple.osc

With the Oscillator miniapp running, ParaView should automatically detect a new Catalyst connection and add several
items to the catalsyt server list in the Pipeline Browser. Clicking the icon next to mesh and oscillator will display the
data to the 3D viewport, updating as the miniapp progresses.

Click on the Steering Parameters item in the Pipeline Browser. The Properties panel will display several controls over
each oscillator which can be modified, manipulating the oscillator parameters as the miniapp executes.

Fig. 4.17: The Properties panel provides parameters to add or delete oscillators in the domain, and change the param-
eters of the oscillators independently.

Results

The key takeaway from this example is that Catalyst and SENSEI can be used to perform computational steering tasks
with in situ visualization. The oscillators, whose properties and locations can be modified in situ, respond to the user’s
modifications. Setting up such a computational steering workflow in your own simulation code requires exposing
desired parameters to SENSEI, and writing XML instructions for ParaView to generate the GUI for modifying the
parameters.

In Transit MxN communication with LAMMPS, SENSEI, and Paraview/Catalyst
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Fig. 4.18: ParaView’s GUI contains the Properties panel, where oscillator parameters can be edited, a center 3D
Viewport where the oscillators are rendered using ray-traced volume rendering, and a second 3D Viewport where the
5 existing oscillators’ locations are visualized with respect to one another.

Synopsis

In this example we instrument the molecular dynamics simulation code LAMMPS with SENSEI and demonstrate in
transit capabilities. Our example showcases M to N ranks redistribution and the Catalyst analysis adaptor to generate
a Cinema database.

Setting Up

This example uses Docker containers. There are two containers: (1) Producer, which uses the LAMMPS molec-
ular dynamics simulator instrumented with SENSEI; and (2) Consumer, which uses the SENSEI endpoint and the
Paraview/Catalyst analysis adaptor.

A Zenodo artifact is available at https://zenodo.org/record/6336286 , containing Dockerfile recipes to build the Pro-
ducer and Consumer. Please refer to file “containers.zip”

You should be able to build your own images with the Dockerfiles provided. If you would like to use prebuilt docker
containers you can get them from the Docker hub:

docker pull srizzi/woiv22producer_runtime
docker pull srizzi/woiv22consumer_runtime

If your site uses Singularity you can build Singularity images pulling from the Docker hub
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Running the Example

From the same Zenodo artifact, you can download “in_transit_demo_files.zip” , containing SENSEI xml configuration
files and scripts to run the demo.

The LAMMPS producer is configured to run a simple simulation configured in file in_lj

With the parameters in in_lj the simulation evolves about 16 million hydrogen atoms. If you would like to change the
size of the simulation, edit the multipliers for xx, yy, and zz in file in_lj. The multipliers are 16 in the file provided,
which results in 67108864 atoms simulated.

The producer is launched with producer.sh . Notice that settings in this script are specific for ThetaGPU, but you
should not find any major difficulties if you wish to adapt it for your system. The script also relies on a local build of
mpich.

Notice that SENSEI uses the file adios_write_sst.xml to configure its backend. You will likely need to change the
NetworkInterface in this xml file with an appropiate value for your own system.

The consumer side contains SENSEI with ParaView/Catalyst. For simplicity, in this demo we use the PosthocIO
backend, which saves the received data in VTK format.

The consumer is launched with script consumer.sh and there are two xml configuration files required for SENSEI.
The first defines the network transport and its called adios_transport_sst.xml . Once again, you may need to change
the NetworkInterface parameter in this file according to your system. The second xml file, vtk_io.xml in this case,
activates the PosthocIO analysis adaptor in SENSEI and specifies a directory to save the data.

These are intended to run on different machines and different ranks on producer (M) and consumer (N). The scripts
provided will launch 16 MPI ranks on the producer and 4 MPI ranks on the consumer.

Results

The simulation is configure to run five timesteps. The SENSEI endpoint should receive data for each timestep and
save it as VTK files.

SENSEI OpenFOAM Interface

Synopsis

The SENSEI OpenFOAM Interface integrates SENSEI into OpenFOAM. The interface is implemented as an Open-
FOAM function object which subclasses the SENSEI VTKDataAdaptor. The interface was developed using Version
7 of OpenFOAM at openfoam.org and SENSEI 3.2.1. This interface may work with other OpenFOAM and SENSEI
versions, but this has not been tested.

Setting Up

These instructions assume that SENSEI and OpenFOAM have already been built and installed.

To build the OpenFOAM function object that implements the SENSEI interface, edit the file functionOb-
jects/sensei/Allwmake and specify paths to SENSEI and to VTK by setting the following variables:

SENSEI_DIR="SENSEI installation path"
VTK_INC="path to VTK include files"
VTK_LIB="path to VTK libraries"
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Note that you must point the the same VTK version used by SENSEI.

These paths will be used to set the compile and link flags used by the build as follows. These typically will not need
to be modified:

export SENSEI_CXXFLAGS="-O2 -I$SENSEI_DIR/include -I$VTK_INC"
export SENSEI_CXXLIBS="-L$SENSEI_DIR/lib -lsensei -lsenseiCore -lpugixml"
export SENSEI_CXXLIBS="$SENSEI_CXXLIBS -Wl,-rpath=$VTK_LIB"

To build the interface, you set up your OpenFOAM environment and execute the Allwmake script:

cd functionObjects/sensei
source "OpenFOAM installation path"/etc/bashrc
./Allwmake

Running Allwmake builds the interface and installs it into the users OpenFOAM library directory.

Running the Example

Copy the pipeCyclic tutorial from the OpenFOAM distribution to use as an example. You can find it here:

"OpenFOAM installation path"/tutorials/incompressible/simpleFoam/pipeCyclic

Edit the system/controlDict file in the tutorial and add a senseiFunctionObject block into the functions section. This
will load the interface during the solver run and export the requested fields. For example:

functions
{

senseiFunctionObject
{

type senseiFunctionObject;
libs ("libSenseiAdaptor.so");

enabled true;

name simpleFoam;
desc "simpleFoam pipeCyclic tutorial SENSEI export";
fields ( U p k epsilon );

}
}

Next, create a file called constants/sensei_config.xml to control what SENSEI will export. Here is an example sen-
sei_config.xml file that outputs PNG images of a slice using Libsim”

<sensei>
<analysis type="libsim"

plots="Pseudocolor"
plotvars="region0/cell/p"
slice-origin="0,0,0.25" slice-normal="1,1,1"
image-filename="openfoam_slice_%ts"
image-width="800" image-height="600"
image-format="png"
frequency="1"
enabled="1" />

</sensei>

Then run the tutorial using the Allrun script:
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./Allrun

Results

Here are two of the images produced running the tutorial with the above sensei_config.xml file:

Fig. 4.19: Z = 0.25 slice at time step 1

4.6 Developer Guidelines

4.6.1 Git workflow

When working on a feature for a future release make a pull request targeting the develop branch. Only features to be
included in the next release should be merged. A code review should be made prior to merge. New features should
always be accompanied with read the docs documentation and at least one regression test.

We use the branching model described here: https://nvie.com/posts/a-successful-git-branching-model/ and detailed
below in case the above link goes away in the future.

4.6. Developer Guidelines 49

https://nvie.com/posts/a-successful-git-branching-model/


SENSEI Documentation, Release 4.0.0-54-g4c28c54

Fig. 4.20: Z = 0.25 slice at time step 10
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The main branches

The central repo holds two main branches with an infinite lifetime:

• master

• develop

The master branch at origin should be familiar to every Git user. Parallel to the master branch, another branch exists
called develop.

We consider origin/master to be the main branch where the source code of HEAD always reflects a production-ready
state.

We consider origin/develop to be the main branch where the source code of HEAD always reflects a state with the
latest delivered development changes for the next release. Some would call this the “integration branch”.

When the source code in the develop branch reaches a stable point and is ready to be released, all of the changes
should be merged back into master somehow and then tagged with a release number. How this is done in detail will
be discussed further on.

Therefore, each time when changes are merged back into master, this is a new production release by definition. We
tend to be very strict at this, so that theoretically, we could use a Git hook script to automatically build and roll-out our
software to our production servers every time there was a commit on master.

Feature branches

May branch off from: develop Must merge back into: develop Branch naming convention: anything except master,
develop, or release-*

Feature branches (or sometimes called topic branches) are used to develop new features for the upcoming or a distant
future release. When starting development of a feature, the target release in which this feature will be incorporated may
well be unknown at that point. The essence of a feature branch is that it exists as long as the feature is in development,
but will eventually be merged back into develop (to definitely add the new feature to the upcoming release) or discarded
(in case of a disappointing experiment).

Creating a feature branch

When starting work on a new feature, branch off from the develop branch.

$ git checkout -b myfeature develop

Incorporating a finished feature on develop

Finished features may be merged into the develop branch to definitely add them to the upcoming release:

$ git checkout develop
$ git merge --no-ff myfeature
$ git branch -d myfeature
$ git push origin develop

The –no-ff flag causes the merge to always create a new commit object, even if the merge could be performed with a
fast-forward. This avoids losing information about the historical existence of a feature branch and groups together all
commits that together added the feature.

4.6. Developer Guidelines 51



SENSEI Documentation, Release 4.0.0-54-g4c28c54

Release branches

May branch off from: develop Must merge back into: develop and master Branch naming convention: release-*

Release branches support preparation of a new production release. They allow for last-minute dotting of i’s and
crossing t’s. Furthermore, they allow for minor bug fixes and preparing meta-data for a release (version number, build
dates, etc.). By doing all of this work on a release branch, the develop branch is cleared to receive features for the next
big release.

The key moment to branch off a new release branch from develop is when develop (almost) reflects the desired state
of the new release. At least all features that are targeted for the release-to-be-built must be merged in to develop at
this point in time. All features targeted at future releases may not—they must wait until after the release branch is
branched off.

It is exactly at the start of a release branch that the upcoming release gets assigned a version number—not any earlier.
Up until that moment, the develop branch reflected changes for the “next release”, but it is unclear whether that “next
release” will eventually become 0.3 or 1.0, until the release branch is started. That decision is made on the start of the
release branch and is carried out by the project’s rules on version number bumping.

Creating a release branch

Release branches are created from the develop branch. For example, say version 1.1.5 is the current production release
and we have a big release coming up. The state of develop is ready for the “next release” and we have decided that
this will become version 1.2 (rather than 1.1.6 or 2.0). So we branch off and give the release branch a name reflecting
the new version number:

$ git checkout -b release-1.2 develop
$ ./bump-version.sh 1.2
$ git commit -a -m "Bumped version number to 1.2"

After creating a new branch and switching to it, we bump the version number. Here, bump-version.sh is a fictional
shell script that changes some files in the working copy to reflect the new version. (This can of course be a manual
change—the point being that some files change.) Then, the bumped version number is committed.

This new branch may exist there for a while, until the release may be rolled out definitely. During that time, bug fixes
may be applied in this branch (rather than on the develop branch). Adding large new features here is strictly prohibited.
They must be merged into develop, and therefore, wait for the next big release.

Finishing a release branch

When the state of the release branch is ready to become a real release, some actions need to be carried out. First, the
release branch is merged into master (since every commit on master is a new release by definition, remember). Next,
that commit on master must be tagged for easy future reference to this historical version. Finally, the changes made
on the release branch need to be merged back into develop, so that future releases also contain these bug fixes.

$ git checkout master
$ git merge --no-ff release-1.2
$ git tag -a 1.2

The release is now done, and tagged for future reference.

4.6.2 Code style

Here are some of the guidelines
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• use 2 spaces for indentation, no tabs or trailing white space

• use CamelCase for names

• variable names should be descriptive, with in reason

• class member variables, methods, and namespace functions start with an upper case character, free functions
start with a lower case

• use the this pointer to access class member variables and methods

• generally operators should be separated from operands by a single white space

• for loop and conditional braces are indented 2 spaces, and the contained code is written at the same indentation
level as the braces

• functions and class braces are not indented, but contained code is indented 2 spaces.

• a comment containing one space and 77 - precede class method definitions

• pointers and reference markers should be preceded by a space.

• generally wrap code at 80 chars

• treat warnings as errors, compile with -Wall and clean all warnings

• avoid 1 line conditionals

there are surely other details to this style, but I think that is the crux of it.

and a snippet to illustrate:

// a free function
void fooBar()
{

printf("blah");
}

// a namespace
namespace myNs
{
// with a function
void Foo()
{

pritf("Foo");
}

}

// a class
class Foo
{
public:

// CamelCase methods and members
void SetBar(int bar);
int GetBar();

// pointer and reference arguments
void GetBar(int &bar);
void GetBar(int *bar);

private:
int Bar;

(continues on next page)
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(continued from previous page)

};

// ---------------------------------------------------------------------------
void Foo::SetBar(int bar)
{

// a member function
this->Bar = bar;

}

// ---------------------------------------------------------------------------
int Foo::GetBar()
{

return this->Bar;
}

int main(int argc, char **argv)
{

// a conditional
if (strcmp("foo", argv[1]) == 0)
{
foo();
}

else
{
bar();
}

return 0;
}

4.6.3 Regressions tests

New classes should be submitted with a regression test.

4.6.4 User guide code style

Please use this style https://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

4.7 Glossary

List of all terms we defined
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