
SENSEI Documentation
Release 3.2.1-102-gfe8b53c

Lawrence Berkeley Lab, Oak Ridge Lab, Argonne Lab, Intelligent Light, Kitware

Feb 24, 2022

Contents

1 Introduction 3

2 Source Code 5

3 Online Documentation 7

4 Table of Contents 9
4.1 Installation . 9
4.2 System Components . 10

4.2.1 System Overview & Architecture . 10
4.2.2 Adaptor API’s . 11
4.2.3 Data model . 12
4.2.4 Analysis back-ends . 16
4.2.5 In transit transport layers and I/O . 21
4.2.6 Partitioners . 22
4.2.7 The SENSEI end-point . 22

4.3 Miniapps . 22
4.3.1 oscillator . 22
4.3.2 newton . 22
4.3.3 mandelbrot . 22

4.4 Examples . 22
4.4.1 Chemical reaction on a 2D substrate . 22

4.5 Developer Guidelines . 27
4.5.1 Git workflow . 27
4.5.2 Code style . 29
4.5.3 Regressions tests . 30
4.5.4 User guide code style . 31

4.6 Glossary . 31

i

ii

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

Fig. 1: SENSEI gives simulations access to a wide array of scalable data analytics and visualization solutions through
a single API.

Contents 1

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

2 Contents

CHAPTER 1

Introduction

Write once run anywhere. SENSEI seamlessly & efficiently enables in situ data processing with a diverse set of
languages, tools & libraries through a simple API, data model, and run-time configuration mechanism.

A SENSEI instrumented simulation can switch between different analysis back-ends such as ADIOS, Libsim, Ascent,
Catalyst etc, at run time without modifying code. This flexibility provides options for users, who may have varying
needs and preferences about which tools to use to accomplish a task.

Deploying a back end data consumer in SENSEI makes it usable by any SENSEI instrumented simulation. SENSEI
is focused on being light weight, having low memory and execution overhead, having a simple API, and minimizing
dependencies for each back-end that we support.

Scientists often want to add their own diagnostics in addition to or in place of other back-ends. We strive to make this
easy to do in Python and C++. We don’t aim to replace or compete against an individual vis/analysis tool, we aim to
make the pie bigger by making their tool and capabilities available to a broader set of users.

With SENSEI the sum is greater than the parts. For instance for both simulations and back-end data consumers, which
have not been designed for in transit use, can be run in transit with out modification. Configuring for in transit run
makes use of the same simple configuration mechanism that is used to select back-end data consumer.

Write once run everywhere. SENSEI provides access to a diverse set of in situ analysis back-ends and transport layers
through a simple API and data model. Simulations instrumented with the SENSEI API can process data using any of
these back-ends interchangeably. The back-ends are selected and configured at run-time via an XML configuration
file. This document is targeted at scientists and developers wishing to run simulations instrumented with SENSEI,
instrument a new simulation, or develop new analysis back-ends.

3

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

4 Chapter 1. Introduction

CHAPTER 2

Source Code

SENSEI is open source and freely available on github at https://github.com/SENSEI-insitu/SENSEI.

5

https://github.com/SENSEI-insitu/SENSEI

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

6 Chapter 2. Source Code

CHAPTER 3

Online Documentation

SENSEI has autmated Doxygen documentation at https://sensei-insitu.readthedocs.io/en/latest/doxygen.

7

https://sensei-insitu.readthedocs.io/en/latest/doxygen

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

8 Chapter 3. Online Documentation

CHAPTER 4

Table of Contents

4.1 Installation

The base install of SENSEI depends on CMake, MPI, Python, SWIG, numpy, and mpi4py.

git clone https://github.com/SENSEI-insitu/SENSEI
mkdir sensei-build
cd sensei-build
cmake ../SENSEI
make -j

This base install enables one to perform in situ in Python using user provided Python scripts. For more information on
Python based in situ see our ISAV 2018 paper.

Additional in situ and in transit processing capabilities are available by enabling various build options on the CMake
command line.

9

https://doi.org/10.1145/3281464.3281465

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

Build Option De-
fault

Description

ENABLE_CUDA OFF Enables CUDA accelerated codes. Requires compute capability 7.5 and CUDA 11
or later.

ENABLE_PYTHON ON Enables Python bindings. Requires Python, Numpy, mpi4py, and SWIG.
EN-
ABLE_CATALYST

OFF Enables the Catalyst analysis adaptor. Depends on ParaView Catalyst. Set Par-
aView_DIR.

EN-
ABLE_CATALYST_PYTHON

OFF Enables Python features of the Catalyst analysis adaptor.

ParaView_DIR Set to the directory containing ParaViewConfig.cmake.
ENABLE_ASCENT OFF Enables the Ascent analysis adaptor. Requires an Ascent install.
ASCENT_DIR Set to the directory containing the Ascent CMake configuration.
ENABLE_ADIOS2 OFF Enables ADIOS 2 in transit transport. Set ADIOS2_DIR.
ADIOS2_DIR Set to the directory containing ADIOSConfig.cmake
ENABLE_HDF5 OFF Enables HDF5 adaptors and endpoints. Set HDF5_DIR.
HDF5_DIR Set to the directory containing HDF5Config.cmake
ENABLE_LIBSIM OFF Enables Libsim data and analysis adaptors. Requires Libsim. Set VTK_DIR and

LIBSIM_DIR.
LIBSIM_DIR Path to libsim install.
ENABLE_VTK_IO OFF Enables adaptors to write to VTK XML format.
EN-
ABLE_VTK_MPI

OFF Enables MPI parallel VTK filters, such as parallel I/O.

VTK_DIR Set to the directory containing VTKConfig.cmake.
ENABLE_VTKM OFF Enables analyses that use VTK-m. Requires an install of VTK-m. Experimental,

each implementation requires an exact version match

4.2 System Components

4.2.1 System Overview & Architecture

SENSEI is a light weight framework for in situ data analysis. SENSEI’s data model and API provide uniform access
to and run time selection of a diverse set of visualization and analysis back ends including VisIt Libsim, ParaView
Catalyst, VTK-m, Ascent, ADIOS, Yt, and Python.

In situ architecture

Fig. 4.1: SENSEI’s in situ architecture enables use of a diverse of back ends which can be selected at run time via an
XML configuration file

The three major architectural components in SENSEI are data adaptors which present simulation data in SENSEI’s
data model, analysis adaptors which present the back end data consumers to the simulation, and bridge code from
which the simulation manages adaptors and periodically pushes data through the system. SENSEI comes equipped
with a number of analysis adaptors enabling use of popular analysis and visualization libraries such as VisIt Libsim,
ParaView Catalyst, Python, and ADIOS to name a few. AMReX contains SENSEI data adaptors and bridge code
making it easy to use in AMReX based simulation codes.

SENSEI provides a configurable analysis adaptor which uses an XML file to select and configure one or more back
ends at run time. Run time selection of the back end via XML means one user can access Catalyst, another Libsim,
yet another Python with no changes to the code. This is depicted in figure Fig. 4.1. On the left side of the figure

10 Chapter 4. Table of Contents

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

AMReX produces data, the bridge code pushes the data through the configurable analysis adaptor to the back end that
was selected at run time.

In transit architecture

Fig. 4.2: SENSEI’s in transit architecture enables decoupling of analysis and simulation.

SENSEI’s in transit architecture enables decoupling of analysis and simulation. In this configuration the simulation
runs in one job and the analysis runs in a second job, optionally on a separate set of compute resources, optionally at
a smaller or larger level of concurrency. The configuration is made possible by a variety of transports who’s job is to
move and repartitions data. This is depicted in figure Fig. 4.2.

In the in transit configuration, the simulation running in one job uses SENSEI’s configurable analysis adaptor to select
and configure the write side of the transport. When the simulation pushes data through the SENSEI API for analysis
the transport deals with presenting and moving data needed for analysis across the network. In asynchronous mode
the simulation proceeds while the data is processed.

A second job, running the SENSEI in transit end-point, uses the configurable analysis adaptor to select and configure
one of the back-ends. A transport specific data adaptor presents the available data to the analysis. The analysis can
select and request data to be moved across the network for processing.

SENSEI’s design enables this configuration to occur with no changes to either the simulation or analysis back-end.
The process is entirely seamless from the simulations point of view and can be so if desired on the analysis side as
well. SENSEI supports in transit aware analyses, and provides API’s for yielding control data repartitioning to the
analysis.

4.2.2 Adaptor API’s

SENSEI makes heavy use of the adaptor design pattern. This pattern is used to abstract away the details of complex
and diverse systems exposing them through a single API. SENSEI has 2 types of adaptor. The DataAdaptor abstracts
away the details of accessing simulation data. This let’s analysis back-ends access any simulation’s data through a
single API. The AnalysisAdaptor abstarcts away the details of the analysis back-ends. This let’s the simulation invoke
all of the various analysis back-ends through a single API. When a simulation invokes an analysis back-end it passes
it a DataAdaptor that can be used to access simulation data.

DataAdaptor API

SENSEI’s data adaptor API abstracts away the differences between simulations allowing SENSEI’s transports and
analysis back ends to access data from any simulation in the same way. A simulation must implement the data adaptor
API and pass an instance when it wishes to trigger in situ processing.

Through the data adaptor API the analysis back end can get metadata about what the simulation can provide. This
metadata is examined and then the analysis can use the API to fetch only the data it needs to accomplish the tasks it
has been configured to do.

Finally the data adaptor is a key piece of SENSEI’s in transit system. The analysis back end can be run in a different
parallel job and be given an in transit data adaptor in place of the simulation’s data adaptor. In this scenario the in
transit data adaptor helps move data needed by the analysis back end. The data adaptor API enables this scenario to
apear the same to the simulation and the analysis back end. Neither simulaiton nor analysis need be modified for in
transit processing.

4.2. System Components 11

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

Core API

Simulations need to implement the core API.

In transit API

In transit transports need to implement the in transit API.

AnalysisAdaptor API

Show the API in-line, template for writing a new adaptor

4.2.3 Data model

The data model is a key piece of the system. It allows data to be packaged and shared between simulations and analysis
back ends. SENSEI’s data model relies on VTK’s vtkDataObject class hierarchy to provide containers of array based
data, VTK’s conventions for mesh based data (i.e. ordering of FEM cells), and our own metadata object that is used to
describe simulation data and it’s mapping onto hardware resources.

Representing mesh based data

SENSEI makes use of VTK data object’s to represent simulation data. VTK supports a diverse set of mesh and
non-mesh based data. Figure numref :data_types shows a subset of the types of data supported in the VTK data model.

Fig. 4.3: A subset of the supported data types.

A key concept in understanding our use of VTK is that we view all data conceptually as multi-block. By multi-block
we mean that each MPI rank has zero or more blocks of data. When we say blocks we really mean chunks or pieces,
because the blocks can be anything ranging from point sets, to FEM cells, to hierarchical AMR data. to tables, to
arrays. The blocks of a multi-block are distributed across the simulation’s MPI ranks with each rank owning a subset
of the blocks. An example is depicted in figure numref :multi_block where the 2 data blocks of a multi-block dataset
are partitioned across 2 MPI ranks.

Fig. 4.4: Multi-block data. Each rank has zero or more data blocks. In VTK non-local blocks are nullptr’s.

A strength of VTK is the diversity of data sets that can be represented. A challenge that comes with this lies in VTK’s
complexity. SENSEI’s data model only relies on VTK’s common, core and data libraries reducing surface area and
complexity when dealing with VTK. While it is possible to use any class derived from vtkDataObject with SENSEI
the following data sets are supported universally by all transports and analysis back-ends.

VTK Class Description
vtkImageData Blocks of uniform Cartesian geometry
vtkRectilinearGrid Blocks of stretched Cartesian geometry
vtkUnstructuredGrid Blocks of finite element method cell zoo and particle meshes
vtkPolyData Blocks of particle meshes
vtkStructuredGrid Blocks of logically Cartesian (aka Curvilinear) geometries
vtkOverlappingAMR A collection of blocks in a block structured AMR hierarchy
vtkMultiBlockDataSet A collection of data blocks distributed across MPI ranks

12 Chapter 4. Table of Contents

https://vtk.org/doc/nightly/html/classvtkDataObject.html
https://vtk.org/doc/nightly/html/classvtkDataObject.html
https://vtk.org/doc/nightly/html/classvtkImageData.html
https://vtk.org/doc/nightly/html/classvtkRectilinearGrid.html
https://vtk.org/doc/nightly/html/classvtkUnstructuredGrid.html
https://vtk.org/doc/nightly/html/classvtkPolyData.html
https://vtk.org/doc/nightly/html/classvtkStructuredGrid.html
https://vtk.org/doc/nightly/html/classvtkOverlappingAMR.html
https://vtk.org/doc/nightly/html/classvtkMultiBlockDataSet.html

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

As mentioned VTK’s data model is both rich and complex. VTK’s capabilities go well beyond SENSEI’s universal
support. However, any dataset type derived from vtkDataObject can be used with SENSEI including those not listed
in the table above. The successful use of classes not listed in the above table depends on support implemented by the
back end or transport in question.

Representing array based data

Each block of a simulation mesh is expected to contain one or more data arrays that hold scalar, vector, and tensor
fields generated by the simulation. VTK’s data arrays are used to present array based data. VTK’s data arrays are
similar to the STL’s std::vector, but optimized for high-performance computing. One such optimization is the support
for zero-copy data transfer. With zero-copy data transfer it is possible to pass a pointer to simulation data directly to
an analysis back-end without making a copy of the data.

All of the mesh based types in VTK are derived from vtkDataSet. vtkDataSet defines the common API’s for accessing
collections of VTK data arrays by geometric centering. SENSEI supports the following two containers in all back-ends
and transports.

Class Description
vtkPointData Container of node centered arrays
vtkCellData Container of cell centered arrays

VTK data arrays support use of any C++ POD type. The two main classes of VTK data arrays of interest here are:

Class Description
vtkAOSDataArrayTemplate Use with scalar, vector and tensor data in AOS layout
vtkSOADataArrayTemplate Use with vector and tensor data in SOA layout

These classes define the API for array based data in VTK. Note the AOS layout is the default in VTK and that classes
such as vtkFloatArray, vtkDoubleArray, vtkIntArray etc are aliases to vtkAOSDataArrayTemplate. For simplicity
sake one can and should use these aliases anywhere an AOS layout is needed.

Zero-copy into VTK

The following snippet of code shows how to pass a 3 component vector field in the AOS layout from the simulation
into VTK using the zero-copy mechanism:

// VTK's default is AOS, no need to use vtkAOSDataArrayTemplate
vtkDoubleArray *aos = vtkDoubleArray::New();
aos->SetNumberOfComponents(3);
aos->SetArray(v, 3*nxy, 0);
aos->SetName("velocity");

// add the array as usual
im->GetPointData()->AddArray(aos);

// give up our reference
aos->Delete();

The following snippet of code shows how to pass a 3 component vector field in the SOA layout from the simulation
into VTK using the zero-copy mechanism:

4.2. System Components 13

https://vtk.org/doc/nightly/html/classvtkDataObject.html
https://vtk.org/doc/nightly/html/classvtkDataSet.html
https://vtk.org/doc/nightly/html/classvtkDataSet.html
https://vtk.org/doc/nightly/html/classvtkPointData.html
https://vtk.org/doc/nightly/html/classvtkCellData.html
https://vtk.org/doc/nightly/html/classvtkAOSDataArrayTemplate.html
https://vtk.org/doc/nightly/html/classvtkSOADataArrayTemplate.html
https://vtk.org/doc/nightly/html/classvtkFloatArray.html
https://vtk.org/doc/nightly/html/classvtkDoubleArray.html
https://vtk.org/doc/nightly/html/classvtkIntArray.html

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

// use the SOA class
vtkSOADataArrayTemplate<double> *soa = vtkSOADataArrayTemplate<double>::New();
soa->SetNumberOfComponents(3);

// pass a pointer for each array
soa->SetArray(0, vx, nxy, true);
soa->SetArray(1, vy, nxy);
soa->SetArray(2, vz, nxy);
soa->SetName("velocity");

// add to the image as usual
im->GetPointData()->AddArray(soa);

// git rid of our reference
soa->Delete();

In both these examples ‘im’ is a dataset for some block in a multiblock data set.

Accessing blocks of data

This section pertains to accessing data for analysis. During analysis one may obtain a mesh from the simulation. With
the mesh in hand one can walk the blocks of data and access the array collections. Arrays in the array collection
are accessed and a pointer to the data is obtained for processing. The collections of blocks in VTK are derived from
vtkCompositeDataSet. vtkCompositeDataSet defines the API for generically access blocks via the vtkComposite-
DataIterator class. The vtkCompositeDataIterator is used to visit all data blocks local to the MPI rank.

Getting help with VTK

For those new to VTK a good place to start is the VTK user guide which contains a chapter devoted to learning VTK
data model as well as numerous examples. On the VTK community support forums volunteers, and often the VTK
developers them selves, answer questions in an effort to help new users.

Metadata

SENSEI makes use of a custom metadata object to describe simulation data and its mapping onto hardware resources.
This is in large part to support in transit operation where one must make decisions about how simulation data maps
onto available analysis resources prior to accessing the data.

Applies to Field name Purpose
entire mesh GlobalView tells if the information describes data on this rank or all ranks

MeshName name of mesh
MeshType VTK type enum of the container mesh type
BlockType VTK type enum of block mesh type
NumBlocks global number of blocks
NumBlocksLocal number of blocks on each rank
Extent global index space extent †,S,*

Bounds global bounding box *

CoordinateType type enum of point data ‡

NumPoints total number of points in all blocks *

NumCells total number of cells in all blocks *

CellArraySize total cell array size in all blocks *

Continued on next page

14 Chapter 4. Table of Contents

https://vtk.org/doc/nightly/html/classvtkCompositeDataSet.html
https://vtk.org/doc/nightly/html/classvtkCompositeDataSet.html
https://vtk.org/doc/nightly/html/classvtkCompositeDataIterator.html
https://vtk.org/doc/nightly/html/classvtkCompositeDataIterator.html
https://vtk.org/doc/nightly/html/classvtkCompositeDataIterator.html
https://vtk.org/vtk-users-guide/
https://vtk.org/community-support/

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

Table 4.1 – continued from previous page
Applies to Field name Purpose

NumArrays number of arrays
NumGhostCells number of ghost cell layers
NumGhostNodes number of ghost node layers
NumLevels number of AMR levels (AMR)
PeriodicBoundary indicates presence of a periodic boundary
StaticMesh non zero if the mesh does not change in time

each array ArrayName name of each data array
ArrayCentering centering of each data array
ArrayComponents number of components of each array
ArrayType VTK type enum of each data array
ArrayRange global min,max of each array *

each block BlockOwner rank where each block resides *

BlockIds global id of each block *

BlockNumPoints number of points for each block *

BlockNumCells number of cells for each block *

BlockCellArraySize cell array size for each block ‡,*

BlockExtents index space extent of each block †,S,*

BlockBounds bounds of each block *

BlockLevel AMR level of each block S

BlockArrayRange min max of each array on each block *

each level RefRatio refinement ratio in i,j, and k direc-
tion S

BlocksPerLevel number of blocks in each level S

The metadata structure is intended to be descriptive and cover all of the supported scenarios. Some of the fields are
potentially expensive to generate and not always needed. As a result not all fields are used in all scenarios. Flags are
used by the analysis to specify which fields are required. The following table is used in conjunction with the above
table to define under which circumstances the specific the fields are required.

symbol required . . .
always required

* only if requested by the analysis
† with Cartesian meshes
‡ with unstructured meshes
S with AMR meshes

Simulations are expected to provide local views of metadata, and can optionally provide global views of metadata.
The GlobalView field is used to indicate which is provided. SENSEI contains utilities to generate a global view form
a local one.

Ghost zone and AMR mask array conventions

SENSEI uses the conventions defined by VisIt and recently adopted by VTK and ParaView for masking ghost zones
and covered cells in overlapping AMR data. In accordance with VTK convention these arrays must by named
vtkGhostType.

Mask values for cells and cell centered data:

4.2. System Components 15

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

Type Bit
valid cell, not masked 0
Enhanced connectivity zone 1
Reduced connectivity zone 2
Refined zone in AMR grid 3
Zone exterior to the entire problem 4
Zone not applicable to problem 5

Mask values for points and point centered data:

Type Bit
Valid node, not masked 0
Node not applicable to problem 1

For more information see the Kitware blog on ghost cells and the VisIt ghost data documentation.

Overhead due to the SENSEI data model

As in any HPC application we are concerned with the overhead associated with our design choices. To prove that we
have minimal impact on a simulation we did a series of scaling and performance analyses up to 45k cores on a Cray
supercomputer. We then ran a series of common visualization and analysis tasks up to 1M cores on second system.
The results of our experiments that showed the SENSEI API and data model have negligible impact on both memory
use and run-time of the simulation. A selection of the results are shown in figure Fig. 4.5.

Fig. 4.5: Run-time (left) and memory use (right) with (orange) and without (blue) SENSEI.

The full details of the performance and scaling studies can be found in our SC16 paper.

4.2.4 Analysis back-ends

Ascent back-end

Ascent is a many-core capable lightweight in-situ visualization and analysis infrastructure for multi-physics HPC
simulations. The SENSEI AscentAnalysisAdaptor enables simulations instrumented with SENSEI to process data
using Ascent.

SENSEI XML

The ascent back-end is activated using the <analysis type="ascent">. The supported attributes are:

attribute description
actions Path to ascent specific JSON file configuring ascent
options Path to ascent specific JSON file configuring ascent

16 Chapter 4. Table of Contents

http://www.visitusers.org/index.php?title=Representing_ghost_data
https://blog.kitware.com/ghost-and-blanking-visibility-changes/
https://dl.acm.org/citation.cfm?id=3015010

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

Back-end specific configurarion

SENSEI uses XML to select the specific back-end, in this case Ascent. The SENSEI XML will also contain references
to Ascent specific configuration files that tell Ascent what to do. These files are native to Ascent. More information
about configuring Ascent can be found in the Ascent documentation at https://ascent.readthedocs.io/en/latest/

Examples

Reaction rate in situ demo ascent_insitu_demo.

Catalyst back-end

ParaView Catalyst (Catalyst) is an in situ use case library, with an adaptable application programming interface (API),
that orchestrates the delicate alliance between simulation and analysis and/or visualization tasks. It brings the renown,
scaling capabilities of VTK and ParaView to bear on the in situ use case. The analysis and visualization tasks can
be implemented in C++ or Python, and Python scripts can be crafted from scratch or using the ParaView GUI to
interactively setup Catalyst scripts (see Catalyst User Guide).

SENSEI XML Options

The Catalyst back-end is activated using the <analysis type="catalyst">.

Python Script

The supported attributes are:

attribute description
pipeline Use “pythonscript”.
filename pythonscript filename.
enabled “1” enables this back-end.

Example XML

Catalyst Python script example. This XML configures a Catalyst with a Python script that creates a pipeline(s).

<sensei>
<analysis type="catalyst" pipeline="pythonscript"

filename="configs/random_2d_64_catalyst.py" enabled="1" />
</sensei>

Back-end specific configuration

The easiest way to create a python script for Catalyst:

1. Load a sample of the data (possibly downsampled) into ParaView, including all the desired fields.

2. Create analysis and visualization pipeline(s) in ParaView by applying successive filters producing subsetted or
alternative visual metaphors of data.

4.2. System Components 17

https://ascent.readthedocs.io/en/latest/
https://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

3. Define a Catalyst extracts with the menu choice Catalyst→Define Exports: this will pop up the Catalyst Export
Inspector panel.

4. Export the Catalyst Python script using the menu Catalyst→Export Catalyst Script.

The Catalyst Export Inspector reference.

Slice Fixed Pipeline

For the Catalyst slice fixed pipeline the supported attributes are:

attribute description
pipeline Use “slice”.
mesh The name of the mesh to slice.
array The data array name for coloring.
association Either “cell” or “point” data.
image-filename The filename template to write images.
image-width The image width in pixels.
image-height The image height in pixels.
slice-origin The origin to use for slicing (optional).
slice-normal The normal to use for slicing.
color-range The color range of the array (optional).
color-log Use logarithmic color scale (optional).
enabled “1” enables this back-end

Example XML

This XML configures a C++-based fixed pipeline for a slice using Catalyst.

<sensei>
<analysis type="catalyst"

pipeline="slice" mesh="mesh" array="data" association="cell"
image-filename="slice-%ts.png" image-width="1920" image-height="1080"
slice-normal="0,0,1"
color-range="0.0001,1.5" color-log="1"
enabled="1" />

</sensei>

Particles Fixed Pipeline

For the Catalyst particle fixed pipeline the supported attributes are:

18 Chapter 4. Table of Contents

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

attribute description
pipeline Use “particle”.
mesh The name of the mesh to slice.
array The data array name for coloring.
association Either “cell” or “point” data.
image-filename The filename template to write images.
image-width The image width in pixels.
image-height The image height in pixels.
particle-style The representation such as: “Gaussian Blur”, “Sphere”,

“Black-edged circle”, “Plain circle”, “Triangle”, and
“Square Outline”.

particle-radius The normal to use for slicing.
color-range The color range of the array (optional).
camera-position The position of the camera (optional).
camera-focus Where the camera points (optional).
enabled “1” enables this back-end

Example XML

This XML configures a C++-based fixed pipeline for particles using Catalyst.

<sensei>
<analysis type="catalyst"

pipeline="particle" mesh="particles" array="data" association="point"
image-filename="/tmp/particles-%ts.png" image-width="1920" image-height="1080"
particle-style="Black-edged circle" particle-radius="0.5"
color-range="0.0,1024.0" color-log="0"
camera-position="150,150,100" camera-focus="0,0,0"
enabled="1" />

</sensei>

Example

Reaction rate in situ demo catalyst_insitu_demo.

Histogram back-end

As a simple analysis routine, the Histogram back-end computes the histogram of the data. At any given time step,
the processes perform two reductions to determine the minimum and maximum values on the mesh. Each processor
divides the range into the prescribed number of bins and fills the histogram of its local data. The histograms are
reduced to the root process. The only extra storage required is proportional to the number of bins in the histogram.

SENSEI XML

The Histogram back-end is activated using the <analysis type="histogram">. The supported attributes are:

4.2. System Components 19

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

attribute description
mesh The name of the mesh for histogram.
array The data array name for histogram.
association Either “cell” or “point” data.
file The filename template to write images.
bins The number of histogram bins.

Example XML

Histogram example. This XML configures Histogram analysis.

<sensei>
<analysis type="histogram"
mesh="mesh" array="data" association="cell"
file="hist.txt" bins="10"
enabled="1" />

</sensei>

Back-end specific configurarion

No special back-end configuration is necessary.

Examples

VM Demo reference.

Autocorrelation back-end

As a prototypical time-dependent analysis routine, the Autocorrelation back-end computes the autocorrelation. Given
a signal f(x) and a delay t, we find ∑︁

𝑥

𝑓(𝑥)𝑓(𝑥+ 𝑡).

Starting with an integer time delay t, we maintain in a circular buffer, for each grid cell, a window of values of the
last t time steps. We also maintain a window of running correlations for each t t. When called, the analysis updates
the autocorrelations and the circular buffer. When the execution completes, all processes perform a global reduction
to determine the top k autocorrelations for each delay t t (k is specified by the user). For periodic oscillators, this
reduction identifies the centers of the oscillators.

SENSEI XML

The Autocorrelation back-end is activated using the <analysis type="autocorrelation">. The supported
attributes are:

20 Chapter 4. Table of Contents

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

attribute description
mesh The name of the mesh for autocorrelation.
array The data array name for autocorrelation.
association Either “cell” or “point” data.
window The delay (t) for f(x).
k-max The number of strongest autocorrelations to report.

Example XML

Autocorrelation example. This XML configures Autocorrelation analysis.

<sensei>
<analysis type="autocorrelation"
mesh="mesh" array="data" association="cell"
window="10" k-max="3" enabled="1" />

</sensei>

Examples

VM Demo reference.

4.2.5 In transit transport layers and I/O

In transit data adaptor & control API

ADIOS-1

(Burlen)

ADIOS-2

(J.Logan)

Libis

(Silvio)

Data elevators

(Junmin)

4.2. System Components 21

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

4.2.6 Partitioners

4.2.7 The SENSEI end-point

4.3 Miniapps

4.3.1 oscillator

The oscillator mini-application computes a sum of damped, decaying, or periodic oscillators, convolved with (un-
normalized) Gaussians, on a grid. It could be configured as a proxy for simulation of a chemical reaction on a
two-dimensional substrate (see reaction_rate_demo).

option description
-b, –blocks INT Number of blocks to use [default: 1].
-s, –shape POINT Number of cells in the domain [default: 64 64 64].
-e, –bounds FLOAT Bounds of the Domain [default: {0,-1,0,-1,0,-1]}.
-t, –dt FLOAT The time step [default: 0.01].
-f, –config STRING SENSEI analysis configuration xml (required).
-g, –ghost-cells INT Number of ghost cells [default: 1].
–t-end FLOAT Request synchronize after each time step.
-j, –jobs INT Number of threads [default: 1].
-o, –output STRING Prefix for output [default: “”].
-p, –particles INT Number of particles [default: 0].
-v, –v-scale FLOAT Gradient to Velocity scale factor [default: 50].
-r, –seed INT Random seed [default: 1].
–sync The end time [default: 10].
-h, –help Show help.

The oscillators’ locations and parameters are specified in an input file (see input folder for examples).

Note that the generate_input script can generate a set of randomly initialized oscillators.

The simulation code is in main.cpp while the computational kernel is in Oscillator.cpp.

To run:

There are a number of examples available in the SENSEI repositoory that leverage the oscillator mini-application.

4.3.2 newton

4.3.3 mandelbrot

4.4 Examples

4.4.1 Chemical reaction on a 2D substrate

This example illustrates how to select different back-ends at run time via XML, and how to switch in between in situ
mode where the analysis runs in the same address space as the simulation and in transit mode where the analysis runs
in a separate application called an end-point potentially on a different number of MPI ranks.

This example makes use of the oscillator mini-app configured as a proxy for simulation of a chemical reaction on a
2D substrate. The example uses different back-ends to make a pseudo coloring of the reaction rate with an iso-contour

22 Chapter 4. Table of Contents

https://gitlab.kitware.com/sensei/sensei/tree/master/miniapps/oscillators/inputs
https://gitlab.kitware.com/sensei/sensei/tree/master/miniapps/oscillators/inputs/generate_input
https://gitlab.kitware.com/sensei/sensei/tree/master/miniapps/oscillators/main.cpp
https://gitlab.kitware.com/sensei/sensei/tree/master/miniapps/oscillators/Oscillator.cpp

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

of 1. The Python analysis computes the area of the substrate where the reaction rate is greater or equal to 1 and plots
it over time.

In situ demos

In this part of the demo XML files are used to switch back-end data consumer. The back-end data consumers are
running in the same process as the simulation. This enables the use of zero-copy data transfer between the simulation
and data consumer.

Ascent in situ demo

Fig. 4.6: A pseudocolor plot rendered by Ascent of the rectaion rate field with an iso-contour plotted at a reaction rate
of 1.0.

In the demo data from the reaction rate proxy simulation is processed using Ascent. Ascent is selected at run time via
the following SENSEI XML:

<sensei>
<analysis type="ascent" actions="configs/random_2d_64_ascent.json" enabled="1" >
<mesh name="mesh">

<cell_arrays> data </cell_arrays>
</mesh>

</analysis>
</sensei>

XML to select the Ascent back-end and configure it using a Ascent JSON
configuration

The analysis element selects Ascent, the actions attribute points to the Ascent specific configuration. In this case a
JSON configuration. The following shell script runs the demo on the VM.

#!/bin/bash

n=4
b=64
dt=0.25
bld=`echo -e '\e[1m'`
red=`echo -e '\e[31m'`
grn=`echo -e '\e[32m'`
blu=`echo -e '\e[36m'`
wht=`echo -e '\e[0m'`

echo "+ module load sensei/3.1.0-ascent-shared"
module load sensei/3.1.0-ascent-shared

set -x

export OMP_NUM_THREADS=1

cat ./configs/random_2d_${b}_ascent.xml | sed "s/.*/$blu&$wht/"

mpiexec -n ${n} \
oscillator -b ${n} -t ${dt} -s ${b},${b},1 -g 1 -p 0 \

(continues on next page)

4.4. Examples 23

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

(continued from previous page)

-f ./configs/random_2d_${b}_ascent.xml \
./configs/random_2d_${b}.osc 2>&1 | sed "s/.*/$red&$wht/"

During the run Ascent is configured to render a pseudocolor plot of the reaction rate field. The plot includes an
iso-contour where the reaction rate is 1.

ParaView Catalyst in situ demo

Fig. 4.7: A pseudocolor plot rendered by ParaView Catalyst of the rectaion rate field with an iso-contour plotted at a
reaction rate of 1.0.

In the demo data from the reaction rate proxy simulation is processed using ParaView Catalyst. Catalyst is selected at
run time via the following SENSEI XML:

<sensei>
<analysis type="catalyst" pipeline="pythonscript"
filename="configs/random_2d_64_catalyst.py" enabled="1" />

</sensei>

The analysis element selects ParaView Catalyst, the filename attribute points to the Catalyst specific configuration. In
this case a Python script that was generated using the ParaView GUI. The following shell script runs the demo on the
VM.

#!/bin/bash

n=4
b=64
dt=0.25
bld=`echo -e '\e[1m'`
red=`echo -e '\e[31m'`
grn=`echo -e '\e[32m'`
blu=`echo -e '\e[36m'`
wht=`echo -e '\e[0m'`

echo "+ module load sensei/3.0.0-catalyst-shared"
module load sensei/3.0.0-catalyst-shared

set -x

cat ./configs/random_2d_${b}_catalyst.xml | sed "s/.*/$blu&$wht/"

mpiexec -n ${n} \
oscillator -b ${n} -t ${dt} -s ${b},${b},1 -g 1 -p 0 \
-f ./configs/random_2d_${b}_catalyst.xml \
./configs/random_2d_${b}.osc 2>&1 | sed "s/.*/$red&$wht/"

During the run ParaView Catalyst is configured to render a pseudocolor plot of the reaction rate field. The plot includes
an iso-contour where the reaction rate is 1.

VisIt Libsim in situ demo

In the demo data from the reaction rate proxy simulation is processed using VisIt Libsim. Libsim is selected at run
time via the following SENSEI XML:

24 Chapter 4. Table of Contents

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

Fig. 4.8: A pseudocolor plot rendered by VisIt Libsim of the rectaion rate field with an iso-contour plotted at a reaction
rate of 1.0.

<sensei>
<analysis type="libsim" mode="batch" frequency="1"

session="configs/random_2d_64_libsim.session"
image-filename="random_2d_64_libsim_%ts"
image-width="800" image-height="800" image-format="png"
options="-debug 0" enabled="1" />

</sensei>

The analysis element selects VisIt Libsim, the filename attribute points to the Libsim specific configuration. In this
case a session file that was generated using the VisIt GUI. The following shell script runs the demo on the VM.

#!/bin/bash

n=4
b=64
dt=0.25
bld=`echo -e '\e[1m'`
red=`echo -e '\e[31m'`
grn=`echo -e '\e[32m'`
blu=`echo -e '\e[36m'`
wht=`echo -e '\e[0m'`

echo "+ module load sensei/3.0.0-libsim-shared"
module load sensei/3.0.0-libsim-shared

set -x

cat ./configs/random_2d_${b}_libsim.xml | sed "s/.*/$blu&$wht/"

mpiexec -n ${n} \
oscillator -b ${n} -t ${dt} -s ${b},${b},1 -g 1 -p 0 \
-f ./configs/random_2d_${b}_libsim.xml \
./configs/random_2d_${b}.osc 2>&1 | sed "s/.*/$red&$wht/"

Shell script that runs the Libsim in situ demo on the VM.

During the run VisIt Libsim is configured to render a pseudocolor plot of the reaction rate field. The plot includes an
iso-contour where the reaction rate is 1.

Python in situ demo

Fig. 4.9: A plot of the time history of the area of the 2D substrate where the reaction rate is greater or equal to 1.0.

In the demo data from the reaction rate proxy simulation is processed using Python. Python is selected at run time via
the following SENSEI XML:

<sensei>
<analysis type="python" script_file="configs/volume_above_sm.py" enabled="1">
<initialize_source>

threshold=1.0

(continues on next page)

4.4. Examples 25

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

(continued from previous page)

mesh='mesh'
array='data'
cen=1
out_file='random_2d_64_python.png'

</initialize_source>
</analysis>

</sensei>

The analysis element selects Python, the script_file attribute points to the user provided Python script and initial-
ize_source contains run time configuration. The following shell script runs the demo on the VM.

#!/bin/bash

n=4
b=64
dt=0.01
bld=`echo -e '\e[1m'`
red=`echo -e '\e[31m'`
grn=`echo -e '\e[32m'`
blu=`echo -e '\e[36m'`
wht=`echo -e '\e[0m'`

export MPLBACKEND=Agg

echo "+ module load sensei/3.0.0-vtk-shared"
module load sensei/3.0.0-vtk-shared

set -x

cat ./configs/random_2d_${b}_python.xml | sed "s/.*/$blu&$wht/"

mpiexec -n ${n} oscillator -b ${n} -t ${dt} -s ${b},${b},1 -p 0 \
-f ./configs/random_2d_${b}_python.xml \
./configs/random_2d_${b}.osc 2>&1 | sed "s/.*/$red&$wht/"

During the run this user provided Python script computes the area of the 2D substrate where the reaction rate is greater
or equal to 1. The value is stored and at the end of the run a plot of the time history is made.

In transit demos

ParaView Catalyst

VisIt Libsim

Ascent

26 Chapter 4. Table of Contents

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

Python

4.5 Developer Guidelines

4.5.1 Git workflow

When working on a feature for a future release make a pull request targeting the develop branch. Only features to be
included in the next release should be merged. A code review should be made prior to merge. New features should
always be accompanied with read the docs documentation and at least one regression test.

We use the branching model described here: https://nvie.com/posts/a-successful-git-branching-model/ and detailed
below in case the above link goes away in the future.

The main branches

The central repo holds two main branches with an infinite lifetime:

• master

• develop

The master branch at origin should be familiar to every Git user. Parallel to the master branch, another branch exists
called develop.

We consider origin/master to be the main branch where the source code of HEAD always reflects a production-ready
state.

We consider origin/develop to be the main branch where the source code of HEAD always reflects a state with the
latest delivered development changes for the next release. Some would call this the “integration branch”.

When the source code in the develop branch reaches a stable point and is ready to be released, all of the changes
should be merged back into master somehow and then tagged with a release number. How this is done in detail will
be discussed further on.

Therefore, each time when changes are merged back into master, this is a new production release by definition. We
tend to be very strict at this, so that theoretically, we could use a Git hook script to automatically build and roll-out our
software to our production servers every time there was a commit on master.

Feature branches

May branch off from: develop Must merge back into: develop Branch naming convention: anything except master,
develop, or release-*

Feature branches (or sometimes called topic branches) are used to develop new features for the upcoming or a distant
future release. When starting development of a feature, the target release in which this feature will be incorporated may
well be unknown at that point. The essence of a feature branch is that it exists as long as the feature is in development,
but will eventually be merged back into develop (to definitely add the new feature to the upcoming release) or discarded
(in case of a disappointing experiment).

Creating a feature branch

When starting work on a new feature, branch off from the develop branch.

$ git checkout -b myfeature develop

4.5. Developer Guidelines 27

https://nvie.com/posts/a-successful-git-branching-model/

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

Incorporating a finished feature on develop

Finished features may be merged into the develop branch to definitely add them to the upcoming release:

$ git checkout develop
$ git merge --no-ff myfeature
$ git branch -d myfeature
$ git push origin develop

The –no-ff flag causes the merge to always create a new commit object, even if the merge could be performed with a
fast-forward. This avoids losing information about the historical existence of a feature branch and groups together all
commits that together added the feature.

Release branches

May branch off from: develop Must merge back into: develop and master Branch naming convention: release-*

Release branches support preparation of a new production release. They allow for last-minute dotting of i’s and
crossing t’s. Furthermore, they allow for minor bug fixes and preparing meta-data for a release (version number, build
dates, etc.). By doing all of this work on a release branch, the develop branch is cleared to receive features for the next
big release.

The key moment to branch off a new release branch from develop is when develop (almost) reflects the desired state
of the new release. At least all features that are targeted for the release-to-be-built must be merged in to develop at
this point in time. All features targeted at future releases may not—they must wait until after the release branch is
branched off.

It is exactly at the start of a release branch that the upcoming release gets assigned a version number—not any earlier.
Up until that moment, the develop branch reflected changes for the “next release”, but it is unclear whether that “next
release” will eventually become 0.3 or 1.0, until the release branch is started. That decision is made on the start of the
release branch and is carried out by the project’s rules on version number bumping.

Creating a release branch

Release branches are created from the develop branch. For example, say version 1.1.5 is the current production release
and we have a big release coming up. The state of develop is ready for the “next release” and we have decided that
this will become version 1.2 (rather than 1.1.6 or 2.0). So we branch off and give the release branch a name reflecting
the new version number:

$ git checkout -b release-1.2 develop
$./bump-version.sh 1.2
$ git commit -a -m "Bumped version number to 1.2"

After creating a new branch and switching to it, we bump the version number. Here, bump-version.sh is a fictional
shell script that changes some files in the working copy to reflect the new version. (This can of course be a manual
change—the point being that some files change.) Then, the bumped version number is committed.

This new branch may exist there for a while, until the release may be rolled out definitely. During that time, bug fixes
may be applied in this branch (rather than on the develop branch). Adding large new features here is strictly prohibited.
They must be merged into develop, and therefore, wait for the next big release.

28 Chapter 4. Table of Contents

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

Finishing a release branch

When the state of the release branch is ready to become a real release, some actions need to be carried out. First, the
release branch is merged into master (since every commit on master is a new release by definition, remember). Next,
that commit on master must be tagged for easy future reference to this historical version. Finally, the changes made
on the release branch need to be merged back into develop, so that future releases also contain these bug fixes.

$ git checkout master
$ git merge --no-ff release-1.2
$ git tag -a 1.2

The release is now done, and tagged for future reference.

4.5.2 Code style

Here are some of the guidelines

• use 2 spaces for indentation, no tabs or trailing white space

• use CamelCase for names

• variable names should be descriptive, with in reason

• class member variables, methods, and namespace functions start with an upper case character, free functions
start with a lower case

• use the this pointer to access class member variables and methods

• generally operators should be separated from operands by a single white space

• for loop and conditional braces are indented 2 spaces, and the contained code is written at the same indentation
level as the braces

• functions and class braces are not indented, but contained code is indented 2 spaces.

• a comment containing one space and 77 - precede class method definitions

• pointers and reference markers should be preceded by a space.

• generally wrap code at 80 chars

• treat warnings as errors, compile with -Wall and clean all warnings

• avoid 1 line conditionals

there are surely other details to this style, but I think that is the crux of it.

and a snippet to illustrate:

// a free function
void fooBar()
{

printf("blah");
}

// a namespace
namespace myNs
{
// with a function
void Foo()
{

(continues on next page)

4.5. Developer Guidelines 29

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

(continued from previous page)

pritf("Foo");
}

}

// a class
class Foo
{
public:

// CamelCase methods and members
void SetBar(int bar);
int GetBar();

// pointer and reference arguments
void GetBar(int &bar);
void GetBar(int *bar);

private:
int Bar;

};

// ---
void Foo::SetBar(int bar)
{

// a member function
this->Bar = bar;

}

// ---
int Foo::GetBar()
{

return this->Bar;
}

int main(int argc, char **argv)
{

// a conditional
if (strcmp("foo", argv[1]) == 0)
{
foo();
}

else
{
bar();
}

return 0;
}

4.5.3 Regressions tests

New classes should be submitted with a regression test.

30 Chapter 4. Table of Contents

SENSEI Documentation, Release 3.2.1-102-gfe8b53c

4.5.4 User guide code style

Please use this style https://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

4.6 Glossary

List of all terms we defined

4.6. Glossary 31

https://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

	Introduction
	Source Code
	Online Documentation
	Table of Contents
	Installation
	System Components
	System Overview & Architecture
	Adaptor API’s
	Data model
	Analysis back-ends
	In transit transport layers and I/O
	Partitioners
	The SENSEI end-point

	Miniapps
	oscillator
	newton
	mandelbrot

	Examples
	Chemical reaction on a 2D substrate

	Developer Guidelines
	Git workflow
	Code style
	Regressions tests
	User guide code style

	Glossary

